Pocket Guide
Programming for the

Apple

SapINK) }13)20d Huiwweiboid

Pitman Programming Pocket Guides

Programming John Shelley

BASIC Roger Hunt

COBOL Ray Welland

FORTRAN Philip Ridler

Pascal David Watt

FORTRAN 77 Clive Page
Programming for the BBC Micro Neil Cryer and Pat Cryer
Assembly Language for the 6502 Bob Bright

Assembly Language for the Z80 Julian Ullmann
Programming for the Apple John Gray

This series of pocket size reference guides provides you with
reliable descriptions of the salient features of all the important
languages and micros.

Programming for the Apple is intended for the reader who has a
reasonable knowledge of BASIC and wishes to develop expertise in
handling the operating procedures of the Apple][or Apple //e
microcomputers.

The Publishers would welcome suggestions for further
improvements to this series. Please write to Alfred Waller at the
address below.

PITMAN PUBLISHING LTD
128 Long Acre, London WC2E 9AN

Associated companies

Pitman Publishing Pty Ltd, Melbourne

Pitman Publishing New Zealand Ltd, Wellington
Copp Clark Pitman, Toronto

Consultant Editor: David Hatter

First edition, 1984

© John Gray 1984

All rights reserved.

Printed in Great Britain at The Pitman Press, Bath

ISBN 0 273 01991 0

Index

How to use this Pocket
Guide 1

Appending library
routines 31

Apple /e 59

Applesoft BASIC 3

Applesoft libraries 29

ASCII codes 5

Autostart ROM 1

BASIC programs 17

Binary files 18

BitStik graphics 56

BSAVE 19

CATALOG 8

Clear screen 31

COPYA program 14

Control characters 48

Control key (CTRL) 4

Copy protection 16

Copying disks 14

Cursor 3

Data plotter 41

Database creator 45

Database reader 46

DELETE 11

DIF format 52

Disk operating system 8

DOS 3.3 System Master

DOS-free disks 13

Drive 10

Editing 6

Enter 4

Error trap 19

Escape key (ESC) 4

EXEC 29

FID program 15

File library 42

File structure 27

Format library 30

Garbage collection 52
Getting started 3
Graphics library 37
Help pages 21

High resolution
graphics 37

IN# 49

Initializing disks 12
Installation 2
Integer BASIC 3
Keyboard 4
Languages 58

LOCK 11

MON and NOMON 23
Multifunction card 58
Peripheral slots 47
Picture files 18

PR# 47

Print buffer 57
Printers 47

RAM cards 57
Random access files 25
RENAME 11

RESET button 4
RETURN key 4
Reading files 23
Sequential files 25
Slot 10

Software packages 50
Space on disk 9
TASC compiler 55
Text display 20
Text files 22

TV connections 62
UNLOCK 11
Volume 11
Wildcard character 15
Winchester disks 57
Writing files 22
Z-80 card 58

How to use this Pocket Guide

This guide is intended to help those of you who have gained access
to an Apple][or an Apple //e, who have a reasonable idea what
a microcomputer can do and have some knowledge of the BASIC
programming language. The growing number of Apple machines
in business, industry and education coupled with the appearance
of Apple][machines in the secondhand market make this category
of Apple user an increasingly large one. The main features of the
Guide are the outline of Apple operating procedures
(concentrating especially on use of disks) and the development of a
number of ‘Applesoft Libraries’ made up of subroutines that can be
appended to users’ own programs. Their function is to have you
learn about Applesoft by actually using its most commonly met
commands and statements. Some advice is also proffered as to how
best to take advantage of various possible ‘developments’ of your
system such as use of an Applesoft compiler, getting rid of the
garbage problem and the use of BitStik for graphics.

Apple][systems vary tremendously according to which
particular bits of hardware are plugged into the Apple. This guide
will assume that your system has 48K of random access memory
and the Autostart ROM (read -only memory chip)which allows you
to have turnkey ‘booting up’ from disks. You will need at least one
disk drive and Applesoft BASIC either permanently present in the
machine in a ROM or available on disk and loadable into a special
RAM card mounted in extension Slot 0.

To get the best out of this guide, work through all the
examples/demonstration programs and build up the Applesoft
libraries. These libraries aren’t complete but they should point you
in the right direction. The intention has been to introduce
Applesoft and DOS statements and commands in an applied
context; so make notes on their use as they are introduced.
Apologies in advance for all the things that couldn’t be included
for lack of space! The Apple is a great machine. Enjoy your
exploring.

Operating the Apple
Installation

There just isn’t enough space in this small guide to provide full
installation details. We’ll assume that you have had enough
experience or help to make sure that

(@) You have your disk drive(s) connected to a disk controller card
mounted in Slot 6.

(b) You have a TV monitor attached to the video output at the right
rear of the Apple (or a TV receiver attached to a suitable RF
modulator and colour card in Slot 7).

(c) Your printer (if you are using one) is attached to a suitable
printer interface card mounted in Slot 1 and that you know how to
switch the printer into ONLINE mode so it can accept output from
the Apple.

If your Apple equipment doesn’t appear to be working correctly,
check that all the parts of the system are correctly connected to the
mains power supply and switched on. If you still have a problem,
check the things mentioned above — or get your supplier to check if
you don’t understand what it means! Above all don’t fiddle with
anything inside the Apple when the mains power is on.

All the demonstration programs and routines have been tested,
so if you have trouble getting them to work, make sure that

(d) you have entered them exactly — no missing or incorrectly
numbered lines, missing statements or incorrect values — please
notice that in lots of the sample programs long program lines have
been broken up, for clarity, into separate lines of the page. Don’t
press RETURN until the whole line has been entered.

(e)you have all the necessary library routines loaded into memory.

(f) you are correctly following the instruction to ‘enter’ as given on
Page 4.

Getting started

Towork through this section you will need the floppy disk labelled
DOS 3.3 System Master that you should have received with your
disk drive. Insert this disk into Drive 1. Now turn the mains power
on. The disk drive begins to work and the red IN USE lamp on the
front lights up. The system is being ‘booted up’ so that the Apple
can communicate with its disk drives. If everything seems to be all
rightjust sit back for a few seconds— if it isn’t then check the points
made on Page 1 and Page 2 concerning system components and
installation. If your machine has a language card fitted you will see
the message that INTEGER (or APPLESOFT) is being loaded. After
some time the screen will show the prompt that indicates your
machine has Applesoft BASIC and that it is available to you] and
next to it there should be a flashing square. This flashing square is
known as the ‘cursor’. The cursor will be a solid square if your
Apple is an Apple][and a flashing dotted square if you have an
Apple // e. Whenever this flashing cursor is visible it indicates that
the Apple is waiting for some kind of instruction or input from you.
If you cannot see the] prompt it may be that there is a > prompt
immediately to the left of the cursor instead. If there is, this
indicates that your Apple is offering you a different kind of BASIC,
Integer BASIC, which is standard on machines delivered in some
parts of the world. You can try getting into Applesoft BASIC by
typing FP and then pressing the RETURN key. If Appleroft is also
available the] prompt will immediately appear, if it doesn’t then
you are stuck with Integer BASIC. There are many similarities
between the Applesoft and Integer BASICs and much of this guide
will be of interest to the Integer BASIC user. Nevertheless, there are
important differences, so beware!

Youdon'talways have to turn the mains power off in order to get
your Apple started from scratch. If you want to reboot the machine
when it is already switched on, type in PR#6 and press the
RETURN key. To the Apple this is just like your turning its mains
power off, then on again.

The keyboard

Make sure you can find all the alphabet characters, punctuation
and numbers and the SPACE bar which lies across the bottom of the
keyboard. Remember that if a key has two symbols on it you get the
upper symbol by holding down the SHIFT key while pressing the
key whose symbol you want. You should also locate ESC (the
ESCAPE key) which you will often be prompted to use, although
pressing it seems normally to have little effect! The ‘control key’,
marked CTRL, is an important key which must always be used in
conjunction with some other key. For example, if you are directed
to press CTRL-C this means you must hold down the CTRL key
while you press the Ckey. The Apple][provides you with two keys
marked €—— and —» which we can call LEFT ARROW and
RIGHT ARROW. These keys allow you to move forward or
backward along a line on the screen. If you move backward when
entering a program line, inputting data or entering a command,
this has the effect of removing whatever characters you backspace
over from the input line — the characters may not disappear from
the screen but they will be ignored by the Apple. In this way you
can type out any mistakes you make. All keys can be used in
conjunction with the ‘repeat key’ which is labelled REPT. Holding
REPT down will cause any other key you hold down to be printed
as often as you wish — if you go too far just come back with the
LEFT ARROW key. The most used key of all must be the RETURN
key. Please notice that throughout this guide whenever you are
directed to ENTER something at the keyboard it is implied that you
type in whatever the entry is and then press RETURN. RETURN is
the sign to the computer that you have typed in whatever was
required and that it should now be acted upon. Dangerously close
to the RETURN key lies the RESET button! The primary purpose of
this button is to stop everything happening and it should be used
with caution! Having removed the Apple’s cover, it is possible to
disable the RESET button by moving the position of a sliding
switch on the Apple’s keyboard encoder board. After moving the
switch, pressing CTRL-RESET has the same effect RESET alone
used to have.

ASCII Codes

It is worth looking a little closer at what the various keys mean to
the Apple by entering and using the following short BASIC
program. First enter NEW — type in NEW and press the RETURN
key. This will clear any program present in the Apple’s memory.
Type in the lines of the program one by one, pressing RETURN at
the end of each line.

10 REM #**x ASCII CODES **x

20 GET KY$: REM RECEIVES CHARACTER

30 PRINT "TO YOU ... "KY$; : REM SHOWS IT

40 PRINT SPC(5);: REM PRINTS 5 SPACES

50 PRINT"TOAPPLE ...";ASC(KY$):REM CONVERTS
TO ASCII

60 GO TO 10

Enter RUN (don't forget to press RETURN) and then press any
key. All the keys will have some effect apart from CTRL, SHIFT and
REPT which don’t do anything except when used in combination
with another key. Every time you press a key the program feeds
back a code number of the character you select. The code numbers
itgives you are the standard ASCII codes which, although you may
never realize it, are what the Apple always receives from the
keyboard whenever you press a key! Try all the keys (don’t forget
the CTRL- and SHIFT- combinations) and then press RESET (or
CTRL-RESET) to leave the program. To the Apple every character
is a number — and machines like the Apple can generate 256
different characters. Enter NEW, type in the following program and
RUN it.

10 REM *#x CHARACTER STRINGS #x*x
20 FORL = 0 to 255

30 PRINT "CODE ";L;" GIVES ";,CHR$(L)
40 NEXT L

Press CTRL-S to stop the list at any time. Lots of codes produce
invisible ‘control characters’ and one set of alphabetic characters
gives lower case on a printer.

Program editing

As you work through the numerous program examples and library
entries presented in this guide you will inevitably make errors. In
any event there are numerous occasions on which you are required
to amend lines that have already been entered. This means that you
must know how to edit program lines — and unfortunately the
Apple][’s editing facilities are NOT the machine’s best feature!
Work through the following guided example to see what’s
involved.

Suppose the program line

30 HTAB H : GOSSUB 300
needs to be amended to
30 HTAB H: VTAB V : GOSUB 300

(@) LIST the part of the program containing the line to be edited. In
this case, enter LIST 30.

(b) Press the ESCAPE key once to set the Apple into the edit mode.
The four keys 1, J, K, M will now cause the cursor to move
respectively up, left, right and down across the screen until the edit
mode is left as a result of some other key being pressed.

(c) Press I and the cursor will move up by one line — if a letter I is
printed instead you mustn’t have pressed ESC once and you must
use the LEFT ARROW to backspace and start all over again. Press
as many times as is necessary to take the cursor to the level of the
line number of the line to be edited.

(d)Next press] as often as required to bring the cursor over the first
digit of the line number.

(€) Press RIGHT ARROW repeatedly over the parts of the line that
are correct. If you go too far just backspace with LEFT ARROW.
Any characters you RIGHT ARROW over, including blank spaces,
will be included in your edited line. If you want to stop blanks
being included you must use ESC and K to skip over them.

30 HTABH:

(f) You need to enter VTAB V : but there isn’t any space! Press ESC
once and I once to bring the cursor onto the line above. Press the
space bar once to leave the edit mode and then type in VTAB V :
Your line will now look odd, but don’t worry, everything will be all
right!

VTAB V :
30 HTAB H : GOSSUB 300

(g) Now press ESC once and M once to bring the cursor back down
again. Press J as often as needed to bring the cursor over the G of
GOSSUB — the next correct character of the original line.

(h) Press RIGHT ARROW as often as needed to bring the cursor over
the top of the second (and unwanted) letter S in GOSSUB. Press
ESC once and K once to skip over the unwanted S.

(i) With the cursor now lying over the letter U press RIGHT
ARROW several times to bring the cursor to the end of the line.
Press return to enter your edited line and LIST the line to check
your handiwork.

Program editing with the Apple is more tedious and prone to
error than with some other micros. The best thing one can say is
that you get used to it! Remember also that you can always change a
faulty line by simply typing in from scratch the correct version —
any existing line with the line number you use will be lost from
memory.

BASIC and DOS

An Apple with disks offers you the use of two distinct facilities.

(@) A programming language to let you get the Apple to accept
input, do calculations, draw pictures, print things ... this is what
Applesoft BASIC provides you with. You have already used
Applesoft to run the short keyboard program presented earlier.

(b) A disk operating system to allow your Apple to communicate
with the disk drive so that you can save/load programs you have
written or bought and any of the data these programs might use . ..
this is what the Apple Disk Operating System (DOS) provides. It
was this program, Apple DOS, that was loaded from the disk in
Drive 1 when you turned the power on — this loading of DOS is
known as ‘booting’ the system.

Just to check that DOS is loaded and that everything is all right
type in CATALOG and press the RETURN key. The disk light
should come on for a few seconds and the screen should fill with a
list of names — these are the names of the programs and files that
are stored on the disk. At the bottom of the list you should see the]
prompt and, next to it, the flashing cursor. If you can’t see the
Applesoft prompt but only the flashing cursor just press the SPACE
bar across the bottom of the keyboard. This should cause the rest of
the disk’s contents to scroll up onto the screen and the cursor
should now be visible. If it isn’t then press SPACE again.
CATALOG shows you 18 items from the disk’s list of contents at
one time and waits for you to press a key before going on to the next
set.

Contents of disks

Entering CATALOG provides important information about what
disks contain. The CATALOG of a disk might produce a list like
this...

* 002 HELLO
* 018 ANIMALS
* 020 FID

034 PICTURE 6

057 MAILSHOT : JUNE
016 RUNTIME

009 COPYA

The four columns of the CATALOG tell you

(@) Whether the file is ‘locked’ or not — if it is locked there is a *
character in the first column.

{b) What type of file each one is

A Applesoft program files

I Integer BASIC program files
B Binary files

T Text files

(c)The amount of space each file takes up on the disk — measured
in ‘sectors’ of 256 characters each. Disks initialized with DOS 3.3
have 560 such sectors but they aren’t all normally available for you
to store files on. Normally disks contain a copy of the DOS program
which occupies 48 sectors. Later, you will find out how to create
disks on which this space is available to you.

(d) The name of the file — with Apple DOS files can be called
anything, as long as the name:

>o-Hwm >

*

(1) isn’t longer than 30 characters
(2) begins with a letter
(3) doesn’t contain a comma

DOS commanus

The Apple knows when and how to communicate with its disk
drives from the DOS commands you send it. You have already used
one, CATALOG, directly from the keyboard and you will meet
many more as you progress through this guide. All DOS commands
can be used from within programs if immediately preceded by
CHR$(4) ...CTRL-D ...as part of a PRINT statement. Many Apple
programmers assign the value CHR$(4) to the variable D$ early in
their programs and then PRINT D$ to precede DOS commands in
forms like PRINT D$;"LOAD HELLO,D1" Any DOS commands you
use can specify the particular slot, drive and volume that you want
to access, if you wish — none MUST be specified.

Slot For most Apple users the slot specification will rarely be
used since most Apple systems have two floppy disk drives
connected to a single disk controller card in Slot 6. However, if you
do have more than two floppy disk drives, you will need to use the
optional slot specification. You might enter RUN HELLO,S5,D1 or
CATALOG,S6,D2 .. .theslot specification is used in just the same
way from within a program. For example PRINT CHR$(4);"BLOAD
FID,S6,D1"

Drive Most Apple users will frequently need to specify the drive
to be accessed. When the Apple is booted up, Drive 1 is
automatically selected as the drive that DOS commands will be
directed towards. As soon as your programs need access to Drive 2
a DOS command containing a drive specification will have to be
sent. Having booted up a data handling program from Drive 1, it
might need access to some data in a file on Drive 2. The program
will have to contain a line such as PRINT CHR$(4);“OPEN
MAILSHOT,D2” It’s important to note that once DOS has been
directed to Drive 2 all subsequent DOS commands will also be
directed towards it. As soon as Drive 1 is required again an
appropriate drive specification will have to be made.

10

Volume One of the items of information first listed when you
CATALOG a disk is its Volume Number. Disks can have Volume
Numbers between 1 and 254. Disks are assigned their Volume
Number when they are initialized. When you use the DOS
command INIT by itself the new disk is automatically assigned a
Volume Number of 254. It is only assigned a different number if
you specify it with an INIT command like INIT WELCOME, V100. It
can be useful to specify volume numbers for data disks so that
particular sets of similarly structured data files can be
distinguished from each other under program control.

Security and order In addition to CATALOG there are four more
DOS commands which are commonly used directly from the
keyboard to keep the contents of disks sorted out. Each can be used
with any type of file.

LOCK: Preventsa file from being overwritten, deleted or renamed.
LOCK MAILSHOT,D2
PRINT CHR$(4);"LOCK HELLO, V254"

UNLOCK: Removes the ‘locked’ status of any file.
UNLOCK MAILSHOT,D2
PRINT CHR$(4);"UNLOCK HELLO,V254"

DELETE: Removes the specified file from the disk.
DELETE FID,D1
PRINT CHR$(4);"DELETE MAILSHOT,S6,V254,D1"

RENAME: Changes the name of any file on the disk.
RENAME FILE 1,FILE 2
RENAME FILE 1,FILE 2,56,D2
PRINT CHR$(4);"RENAME FILE 1,FILE 2"
If the new name you give to the file might be the same as that of
afile already on the disk, then DELETE the existing file first —
or else you’ll finish up with two files having the same name!

11

Initializing disks

Before you can do much with DOS you have to be able to prepare
blank disks so that they can be used with the Apple to store
programs and data files. This procedure is known as ‘initializing’
the disk. Without being initialized using the DOS command INIT,
a disk cannot be ‘read’ by the Apple; so every disk you use must
have this procedure carried out on it. Having booted up the Apple
using the DOS 3.3 System Master disk you should replace this disk
with an uninitialized disk in Drive 1. First enter NEW and then
enter INIT HELLO . .. the red disk light will come on and the disk
drive will work for a couple of minutes. When the light goes off you
should enter the command CATALOG and you should be
presented with

JCATALOG
DISK VOLUME 254
A 002 HELLO

The program listed on the disk as HELLO will run automatically
whenever you boot up your Apple from this disk. As it stands this
HELLO program doesn’t seem very exciting and it doesn’t seem to
do much. However, you can replace the existing HELLO program
by saving any other program under the name HELLO and it will
become the program that runs automatically when you turn the
Apple on. This ‘turnkey operation’ allows you to make your
software very user friendly indeed. When disks are initialized
using the standard routine described above 12K of their storage
space is used up creating a copy of the DOS program itself on the
disk — thisis in order that the disk can itself be successfully booted
up from. Many of the disks you will use will never need this DOS
image because you will never need to boot up your Apple system
from them. This is especially the case for the data disks you will use
with your word processor package and your database programs.

12

Such disks simply act as receptacles for the files that the program
disks create on them. Here’s a program to let you initialize your
disks without DOS and so make another 12K available on each disk
you initialize in this way. When you have entered it save the
program on your workdisk under the name DOSFREE.

100
105
110
120
130
140
150
160
170

180

190

200
205
210
220
225

230
240
250
260
270
275
280
290
320
330
340
350

REM *** DOSFREE *x*x

HOME : VTAB2

FORI =1 TO 40 : PRINT "-"; : NEXT

INVERSE : PRINT "DOS -FREE DISKS" : NORMAL
FORI =1 TO 40 : PRINT "-"; : NEXT

PRINT : PRINT

PRINT "DEFAULTS SLOT = 6 DRIVE = 1 VOLUME = 254"
PRINT "PRESS RETURN TO ACCEPT DEFAULT" : PRINT
S =6 :INPUT "SLOT ? ";S$:IF VAL(S$) >0
AND VAL(S$)<8 THEN S = VAL(S$)

D =1 :INPUT "DRIVE ? ";D$:IF VALDS$) >0
AND VAL(D$) < 3 THEN D = VAL(D$)

V = 254 : INPUT "VOLUME ? ";V$: IF VAL(V$) > 0
AND VAL(V$) < 255 THEN V = VAL(V$)

PRINT : PRINT

FLASH : PRINT "CAUTION" : NORMAL : PRINT
PRINT "ABOUT TO FORMAT THE DISK IN"
INVERSE

PRINT"SLOT =";S;" DRIVE = ";D;" AND VOLUME = ";V
: NORMAL

NORMAL : PRINT "PRESS ESCAPE TO ABANDON"
PRINT "OR THE RETURN KEY TO START"

PRINT

GET S$: IF S$ = CHR$(27) THEN GO TO 100

IF S$ <> CHR$(13) THEN GO TO 260

PRINT

POKE 44723,0

POKE 44802,234 : POKE 44803,234 : POKE 44804,234
PRINT CHR$(4);"INIT HELLO,S";S;",D";D;",V";V
PRINT CHR$(4);"DELETE HELLO"

POKE 44723,12

POKE 44802,32 : POKE 44803,74 : POKE 44804,183

13

Copying disks

Floppy disks are a very reliable way of storing programs and data if
they are used and stored properly. All the same, accidents of
various kinds do happen and, if the contents of your disks are at all
important to you, you must know how to make backup copies. Your
System Master disk provides two ways of ‘backing up’: one allows
you to back up a whole disk, the other allows you to back up
particular files and programs.

(a)Backing up a whole disk Insert your System Master Disk into
Drive 1 and enter RUN COPYA . . . a program will load from the
disk. When the disk light goes off you will be prompted with

APPLESOFT DISKETTE DUPLICATION PROGRAM
ORIGINAL SLOT: DEFAULT = 6

Just press RETURN and respond appropriately to the series of
prompts which follow. Your ‘original’ is the disk that you want a
copy of. The duplicate can be any disk that doesn’t contain
something you want — it can be a brand new disk or a previously
used one. It doesn’t matter whether the disk has been initialized or
not, whatever information is on the disk it will be removed when
COPYA runs. If you have two disk drives it’s best to get into the
routine of having the ‘original’ disk in Drive 1 and the ‘duplicate’in
Drive 2. That way you are less likely to accidentally copy onto the
original and lose valuable information. If you have just one disk
drive you can still use COPYA. When prompted to enter the drive
numbers for the original and the duplicate you should enter 1 for
both. The Apple will copy the original in several chunks with you
having to exchange the original and duplicate disks at each stage.
It’s when backing up disks that you’ll most wish that you had two
disk drives! As a security measure, you might want to place a ‘write
protect tab’ over the notch on your original disk during copying so
as to preclude the disaster that can result from mixing the disks up.

14

(b) Backing up particular files Insert your Systems Master Disk
into Drive 1 and enter BRUN FID ... BRUN causes amachine code
program to load and run — a menu appears:

<1> COPY FILES

<2> CATALOG

<3> SPACE ON DISK

<4> UNLOCK FILES

<5> LOCK FILES

<6> DELETE FILES

<7> RESET SLOT & DRIVE
<8> VERIFY FILES

<9> QUIT

WHICH WOULD YOU LIKE ?

The FID program is a series of utilities that are there to help you
keep your disks in order. Enter 1 to select the file copying routine.
When prompted, enter 6 as the source slot and enter appropriate
drive numbers for your ‘original’ and ‘backup’ disks. Enter 1 for
both if you have just one disk drive. Next, you are asked for the
FILENAME? . . . at this point you can either name a single file for
copying, or, using the ‘wildcard’ symbol =, have a series of files
copied at once. Suppose one of your disks contains the files FILE
DEMO 1, FILE DEMO 2 and FILE DEMO 3. You might enter FILE
DEMO 2 as the filename you wish to select for copying, the other
files will then remain uncopied. However you could enter FILE=
or F= or even =DEM= to have all three files copied onto a backup
disk. The ‘wildcard’ character = will be taken by the Apple as
equivalent to any character or set of characters that lie in a file name
at its position. Copying all the files present on a disk will occur if =
is entered by itself. Whenever you use the wildcard character in
any specification of the filename(s) you want to copy you have to
respond to the question DO YOU WANT PROMPTING ? with either
aYoraN.If you answer Y then you will be presented with each
filename and required either to confirm its transfer with Y or to
cancel it with N.

15

Copy protection

COPYA or FID will allow you to keep backups of all the programs
you write yourself, all your data files and many of the programs
available commercially. However, to prevent illegal distribution of
copies of the software they write, it is now common practice for
Apple software authors to incorporate some kind of copy
protection into their programs. Copy protection usually involves
some kind of non-standard way of arranging the magnetic
information on the disk. There are three ways of providing a
security backup:

(@) Software producers will often provide an ‘official’ backup disk
to the officially registered purchaser of the software.

(b) In addition to COPYA and FID there are many other copy
programs available — one well-known example is called
‘Locksmith’. Such programs are able to spot the tricks the software
author has used to copy protect his programs and to overcome
them. As soon as a copy program is released, new copy protection
techniques are introduced by the software authors. If you buy such
a copy program it may well copy some software that your ordinary
copiers can’t, but there’s a good chance it won'’t copy everything.

(c)It’s possible to buy a peripheral card to plug into your Apple that
provides facilities for backing up copy-protected software. Once
the card is installed in the Apple, the software to be backed up is
loaded and run as normal. The copy card in effect holds a duplicate
image of the contents of the Apple’s memory and this duplicate
image can be simply dumped onto a disk from the card. This stored
chunk of memory contents can be loaded back into memory from
the disk at any time; so although the ‘backup’ disk doesn’t in fact
hold exactly the same information as the original the effects are the
same.

16

Using BASIC programs

Applesoft and Integer BASIC program files are the easiest to use of
the file types. They can be brought into the Apple’s memory and
used with the LOAD or the RUN commands that DOS provides.
Make sure the System Master disk is in Drive 1. Enter LOAD
HELLO and the drive light will come on briefly and then stop.
Nothing else happens and the flashing cursor comes back. The
DOS command LOAD simply places a program in memory, the
program is not executed. To execute the loaded program you next
enter the BASIC command RUN. DOS in fact supplies a simpler
way of doing the whole thing. Simply entering RUN followed by
the name of a program file causes the program to be loaded and
executed in one step. So entering RUN HELLO causes the System
Master disk’s introductory program to LOAD and RUN. If you have
written a BASIC program it is of course important to be able to store
it onto a disk. First let’s write a program! Enter NEW to clear
Apple’s memory and then enter the following program lines

10 PRINT "HELLO!"

20 PRINT

30 PRINT "THIS IS A SAMPLE PROGRAM"
40 END

When you have entered the program, first of all RUN it to see what
it does. Now replace the System Master disk in Drive 1 by your
workdisk. Use the DOS command SAVE to store the program by
entering SAVE SAMPLE ... when the disk drive stops whirring
and the flashing cursor comes back CATALOG the disk. You
should find an entry in the CATALOG like this

A 002 SAMPLE
To check that the program has been stored, enter NEW to clear the
Apple’s memory — if you now try to RUN the program nothing will

happen. The program isn’t there. Next enter RUN SAMPLE and the
program should load back in from disk and run as before.

17

Using binary files

Binary files can be easily spotted on the CATALOG by the letter B
in front of them. These files are straightforward copies of the
contents of particular sections of the Apple’s memory. The Apple’s
memory can be thought of as 65,536 (1K=1024 so 64K=65,536)
pigeonholes each containing a value corresponding to one of the
256 characters the Apple can generate. As you do things with the
Apple, the contents of many of these pigeonholes change.
Whenever you type characters in at the keyboard a particular area
of memory has new values poked into it. As you draw a high
resolution graphics image with the graphics tablet or by using
Applesoft’s graphics statements a different area of the Apple’s
memory is altered. It’s very convenient to be able to store a
‘snapshot’ of memory on disk for later retrieval.

(@) Saving and loading picture files The Apple has two areas of
memory that it uses for high resolution graphics images, Page 1 and
Page 2. Any picture that you create on either of these pages can be
easily saved as a disk file. First let’s make a picture to experiment
with. Enter and RUN the following program. As you will see, this
program just produces a simple graph and leaves you able to see
what you are entering at the bottom of the screen.

10 REM #**x GRAPHER ***
20 TEXT : HOME : REM CLEARS TEXT SCREEN
30 HGR : REM HIRES PAGE 1
40 HCOLOR = 3 : REM CHOOSE WHITE
50 VTAB 22 : REM CURSOR DOWN SCREEN
60 HPLOT 0,0 TO 279,0 TO 279,159
TO 0,159 TO 0,0 : REM DRAWS FRAME
70 HPLOT 0,55 TO 69,145 TO 139,25
TO 209,115 TO 279,35: REM DRAWS GRAPH

To store any section of memory we have to know at which memory
locations the section begins and how many locations there are in
the section to be stored.

18

The information making up any Page 1 high resolution picture is
located in the Apple’s memory as an 8K block (8192 locations)
starting at location 8192. To store the picture on the disk as GRAPH
you should now enter the direct command BSAVE
GRAPH,A8192,1.8192 — of course you can use any other name you
want for the file and save it onto a different drive if you wish. Enter
BSAVE PICTURE,A8192,1.8192,D2 to save it under the name
PICTURE on Drive 2. A graphics image created in the Page 2 high
resolution area of memory would be saved with BSAVE
GRAPH,A16384,1.8192 since Page 2 graphics start at location
16384. Once a picture is stored on the disk as a binary file it can be
loaded back into memory at any time — either directly, or as part of
aBASIC program. Let’s do it! Enter NEW to clear Apple’s memory.
Enter TEXT to get out of the graphics mode. Now enter and RUN
the following program:

100 REM *x* PICTURE VIEWER #*x*
110 ONERR GO TO 900: REM IN CASE OF ERROR
120 HOME : VTAB2
130 INPUT "ENTER PICTURE NAME ";BF$

: REM WHAT NAME DID YOU SAVE IT UNDER?
140 HGR : REM PAGE 1
150 HCOLOR = 3: REM WHITE
160 PRINT CHR$(4);"BLOAD ";BF$

: REM DOS COMMAND TO LOAD PICTURE FILE
170 VTAB 22 : REM MOVE TEXT CURSOR DOWN
180 PRINT "PRESS RETURN TO WIPE SCREEN"
190 GET S$: IF S$ <> CHR$(13) THEN GO TO 190
200 TEXT: REM LEAVE GRAPHICS
210 PRINT "ANOTHER PICTURE ? Y/N ";
220 GET S$:IF S$ = "Y" THEN PRINT : GO TO 120
230 HOME : END
900 REM #*x*x SIMPLE ERROR TRAP **x*
910 TEXT : HOME : VTAB 12 : HTAB12
920 EC = PEEK(222) : IF EC <> 6 THEN

PRINT "UNKNOWN ERROR"

: POKE 216,0 : END
930 FLASH : PRINT "NO SUCH PICTURE" : NORMAL
940 FOR DL = 1 TO 3500: NEXT : CALL —3288 : GO TO 100

19

You may have bought some software that displays high
resolution graphics screens when it runs. If you have, CATALOG
the disk containing the software. If you see a binary file which is
034 sectors in size the chances are that it is a picture! Note the file’s
name and use PICTURE VIEWER to have a look at it. If you want a
quick way to look at a picture you know is on the disk you can also
getto it by using direct commands. If the file were called PICTURE
then you would enter HGR and then next enter BLOAD PICTURE
— this will successfully reload and display any picture that was
originally saved from high resolution Page 1. If nothing seems to
happen even though the disk drive whirrs away for quite some time
it could be that the picture was originally saved from Page 2 and it
has automatically loaded back to the location in memory where it
came from — you can't see it because you are looking at Page 1!
When the disk stops working enter BLOAD PICTURE,A8192 ...
although the file ‘knows’ it should load at location 16384 which is
the beginning of Page 2, the command you have entered forces it to
load at location 8192 which is the beginning of Page 1.

(b)Saving and loading a text screen Sometimes it’s useful to store
the contents of an ordinary text display onto disk. For example, you
can store a series of ‘help pages’ that your program users can call up
from the disk if they get into trouble. These pages shouldn’t often
be needed and it would be wasteful to use up memory having them
asa permanent part of the program. Saving a text display is similar
to saving pictures. Press CTRL-RESET to make sure you’re in the
text mode and type in any series of characters and lines that you
fancy. Enter BSAVE TEXT,A1024,1.1024 to save a snapshot of the
text display on the screen now. The disk drive will operate for a few
seconds and the flashing cursor will return. Enter HOME to clear
the screen and prove that you really did take a snapshot of the
screen by loading it back into memory with BLOAD TEXT ...the
following program lets you create on disk a number of ‘help pages’
that you can retrieve at will.

20

When you RUN this program you will be prompted with the title
for each page. Use the space bar, RETURN key and LEFT ARROW
to move around the screen to the point where you want to write
text. Press ESCAPE to save a page and CTRL-Q to leave the
program.

100 REM #*** HELP PAGER ***

110 P = 1 : REM SETS FIRST PAGE NUMBER

120 HOME : VTAB2

130 FORI = 1 TO 40 : PRINT "-"; : NEXT

140 INVERSE : PRINT "HELP PAGE ";P : NORMAL

150 FORI = 1 TO 40 : PRINT "-"; : NEXT

160 IF PEEK(37) > 22 THEN POKE 37,3

170 GET S$: IF S$ = CHR$(17) THEN HOME: END
: REM CHECKS FOR CTRL-Q

180 IF S$ = CHR$(27) THEN GO TO 200

190 PRINT S$; : GO TO 160

200 PRINT

210 PRINT CHR$(4);"BSAVE HELP PAGE ";P;",A1024,L1024"

220 P=P+1

230 GO TO 120

A program wanting to retrieve any of the help pages you have saved
would use lines such as

200 INPUT "WHICH HELP PAGE ? ";P
210 PRINT CHR$(4);"BLOAD HELP PAGE ";P

Using stored text screens in this way can occasionally cause
problems with disk access in other parts of a program. This is
because the block of memory that contains the screen information
also has, hidden away inside it, a number of important values used
by DOS. If you do have this problem then solutions such as those
published in Windfall magazine’s August 1983 issue may be of
interest.

(c) Machine code programs We have seen how we can BSAVE
and BLOAD sections of memory that represent ‘snapshots’ of the
Apple’s screen display. Many of the binary files listed when you
CATALOG your disks will be machine code programs or
subroutines that have to be BRUN or BLOADed and CALLed from a
BASIC program. Don’t expect pictures if you use these!

21

Using text files

(@) Opening files All data file handling using Apple DOS
involves certain fundamental steps. Before data can be stored in a
file, orretrieved from it, the file has to be ‘opened’. We use the DOS
command OPEN to create a new file or to use one that has been
created previously. The program line PRINT CHR$(4);"OPEN
NAMES" opens a disk file called NAMES so that the file can be usec
in some way. Notice how the DOS command is used as part of a
PRINT statement which begins with a CTRL—D character,
CHR$(4). Once opened, the file remains open until we send the
DOS command to CLOSE it. Under normal conditions DOS will let
you keep up to 16 files open at any one time. An OPEN command
can be followed by any number of READ or WRITE commands.

(b)Writing to files WRITE creates the conditions that enable you
to store data on disk — to actually store the data it must be sent to
the disk as part of a PRINT statement following the issue of OPEN
and WRITE commands. The following program shows how string
constants, numbers, string variables and numeric variables can be
PRINTed onto the disk.

100 REM #*% WRITE SIMPLE FILE **#
110 D$ = CHR$(4) : REM CTRL-D

120 A$ = "CAT" : B$ = "DOG" : C$ = " HORSE"
130 A=1:B=2:C=3

140 PRINT D$;"OPEN ANIMALS"

150 PRINT D$;"WRITE ANIMALS"

160 PRINT "ANIMALS"

170 PRINT 3

180 PRINT A$: PRINT A

190 PRINT B$: PRINT B

200 PRINT C$: PRINT C

210 PRINT D$;"CLOSE ANIMALS"

22

Notice that in Line 210 the DOS command CLOSE tidies up the file
handling operation by closing the ANIMALS file just opened.
When it is desired to close a single file of several that have been
opened the filename should be included in the DOS command, as
in this case. An alternative PRINT D$;"CLOSE" would have
functioned just as well in this program — and, at the same time,
closed down any other files accidentally left open. Avoiding
leaving files unclosed is important because as soon as the Apple
tries to open one too many files the error message NO BUFFERS
AVAILABLE will be received and your program is likely to crash.

(c) See what’s going on Apple DOS uses MON and NOMON to
provide a way of ‘monitoring’ what communications are going on
between the computer and the disks. Add the following lines to the
program you have just entered and then RUN the program

135 PRINT D$;"MON C,1,O"
205 PRINT D$;"NOMON C,1,0"

Line 135 turns screen monitoring of DOS communications on and
Line 205 turns it off. C,Iand O refer to ‘control’, ‘input’ and ‘output’
respectively and any combination of these can be specified. Add
these lines into any of the file handling programs you use in order
to see what is being passed to and from the disk.

(d)Reading the files It is most important to recognize that files
can only be read if they have been written to ...and that the data
comes out of the file in the pattern it went in! This means that you,
the programmer, need to make sure that somehow or other your file
reading programs reflect the structure of the data storage that your
file writing programs have established. Enter NEW to clear
memory and then enter and RUN the next program. Notice
carefully how the file ANIMALS is opened in Line 120 and then
Line 130 indicates that the file is soon to be ‘read’ from. The INPUT
statement is the means by which data is actually recovered from the
disk.

23

100 REM #*x READS SIMPLE FILE *xx
110 D$ = CHR$(4) : REM CTRL-D

120 PRINT D$;"OPEN ANIMALS"

130 PRINT D$;”READ ANIMALS”

140 INPUT FI$

150 INPUT F

160 FORI=1TOF

170 INPUT ANS$(I) : INPUT AN(I)

180 NEXT I

190 PRINT D$;"CLOSE"

200 HOME : VTAB2

210 PRINT "IN THE ";FI$;" FILE"

220 PRINT "THERE ARE ";F;" ANIMALS"
230 PRINT : PRINT

240 FORI =1 TO F : PRINT AN(I),AN$(I) : NEXT

Notice the following important points:

(1) The quantity, type and order of data items retrieved from the file
ANIMALS in Lines 140180 are exactly the same as those stored in
the file by Lines 160-200 of the previous program.

(2) The variable names assigned to the data values read from the file
do NOT have to be the same as those used to store them.

(3) Line 150 inputs a numeric value indicating how many sets of
data are stored in the rest of the data file. Having been INPUT (in
this case as the variable F), this value is then used to control how
many times the computer passes around the data input loop
contained in Lines 160-180. Keeping within the file itself the
information needed to control any program reading from the file is
a very useful technique.

(4) All the data required must be INPUT from the file before any
PRINT statements are used to send output to the screen or printer.
PRINT statements sent before the file has been read and closed can
cause problems.

24

(e) Sequential and random In the previous simple examples our
file has consisted of a list of strings and /or numbers that are sent to
the disk by WRITE/PRINT statement combinations and retrieved
from the disk by READ/INPUT statements. In reading such a file it
isnecessary to start at the beginning and work through towards the
end until you find what you want. Files in which the data has to be
read ‘in sequence’ like this are called sequential files.

For a file of three animals this is fine, but suppose your file
consists of hundreds of names and addresses and your retrieval
program needs to find just one of them in order to read or amend it!
In such a case it is an advantage to be able to tell the computer
exactly where the required ‘record’ is in the file and for the
computer to direct disk reading operations straight to the
appropriate part of the file without having to read all the data
before it in the file. This involves specifying how long each record
is and which position in the file the record is. Random access files
use records of fixed length and allow direct access to a particular
record.

Using random access files allows for much faster data storage
and retrieval if files are of medium to large size. The following
program doesn't create a large file and therefore only demonstrates
the techniques of random access file use, not their advantages. The
program demonstrates how you can use random access files to get
to a particular record quickly. However, there is a disadvantage!
Line 115 of the program instructs the Apple to make the records in
the file 8 characters long ... PRINT D$;"OPEN RANDOM
ANIMALS,L8" Lines 120 and 270 instruct the Apple to write or
read the record specified by the numerical value specified at the
end of the DOS command.

25

100
110
115
120
125

130
135
140
145

150
155
160
200
205
210
220
230
240
245
250

260
270
280
290
300
305
310
320
900
910
920
930
940
950

REM *** RANDOM ANIMALS ##x

D$ = CHR$(4) : REM CTRL-D

PRINT D$;"OPEN RANDOM ANIMALS,L8"

PRINT D$;"WRITE RANDOM ANIMALS,R0"

READ N : REM NOT A DOS COMMAND

— ‘READS’ FROM DATA LINE 900

PRINT N

FORR=1TON

PRINT D$;"WRITE RANDOM ANIMALS,R";R

READ ANS$: REM NOT A DOS COMMAND

— 'READS' FROM DATA LINES 910-950

PRINT AN$

NEXT R

PRINT D$;"CLOSE"

HOME : VTAB2

PRINT "THERE ARE ";N;" RECORDS"

PRINT "ENTER RECORD NUMBER "

PRINT "OR PRESS RETURN TO QUIT"

PRINT

INPUT "READ WHICH RECORD ? ";R$: R = VAL (R$)
IF R$ = "" THEN END: REM CHECKS FOR RETURN
IFR<1ORR>N THEN FLASH : PRINT "NO SUCH RECORD"
: NORMAL : GOTO 240

PRINT D$;"OPEN RANDOM ANIMALS,L8"

PRINT D$;"READ RANDOM ANIMALS,R";R

INPUT AN$

PRINT D$;"CLOSE"

HOME : VTAB2

INVERSE : PRINT "RECORD ";R : NORMAL : PRINT
PRINT "THE ANIMAL IS ";AN$

FOR DL = 1 TO 2000 : NEXT : GO TO 200

DATA 5

DATA "CAT"

DATA "DOG"

DATA "EAGLE"

DATA "HORSE"

DATA "COW"

26

How efficiently was the disk’s storage space used? The longest
name stored, EAGLE, took up only five of the eight character spaces
allocated to it in Line 115 — the other spaces are just wasted.
Perhaps we should have made the record length six characters ? If
we had, then it wouldn't be possible to fit ELEPHANT or
MONGOOSE into a record. Even as it is, our file can’t accept
RHINOCEROS without its last few characters spilling over into the
following record. This is a fundamental problem associated with
the use of random access files — the record length has to be large
enough to accommodate the longest intended entry. Wherever
records are shorter than this maximum length the difference
between them will just be wasted space. Lack of economy in the
disk storage of data is the price paid for improved speed of access.

(f)File structure Inasequential file, various data items are stored
one after the other separated by RETURN characters, which are
inserted when the file is created, to indicate the end of each item.
Within each record of a random access file there may be a number
of subdivisions corresponding to different items of data. Each such
subdivision is referred to as a field. So, for example, a random
access file called MAILSHOT may be composed of a number of
records, each of which contains a name and address. Each record
would probably consist of fields each holding an item such as a
person’s name, street name, town name, county or postcode.
Within the record DOS separates the fields by a RETURN character
to indicate the end of each item. This means in effect that each
record within a random access file acts like a mini-sequential file.
Although the record itself has a maximum length, the relative
lengths of the fields within it are not fixed — the only constraint
upon what goes into a particular record is that the combined length
of the constituent fields (including the RETURN characters that
DOS inserts between them) does not exceed the length allocated to
the record. Now add

915 DATA "SYLVESTER"
925 DATA "ROVER"

935 DATA "GOLDIE"

945 DATA "RED RUM"
955 DATA "DAISY"

27

Some lines need amending so as to read as follows

115 PRINT D$;"OPEN RANDOM ANIMALS,L16"
145 READ AN$,N$: REM NOT A DOS COMMAND
— READS DATA LINES
150 PRINT ANS$: PRINT N$
260 PRINT D$;"READ RANDOM ANIMALS, L 16"
280 INPUT ANS$: INPUT N$
300 PRINT
305 PRINT R
310 FORI = 1 TO LEN(ANS$): INVERSE
: PRINT MID$ (AN$,1,1);: NORMAL
: PRINT CHR$(32);:NEXT : INVERSE
: PRINT ",";:;NORMAL:PRINT CHR$(32);
311 FORI = 1 TO LEN(N$): INVERSE
: PRINT MID$ (N$,I,1):NORMAL
: PRINT CHR$(32);;NEXT
312 FORI=1TO 16 — (LEN(AN$)+LEN(N$)+1)
: INVERSE : PRINT CHR$(32);: NORMAL
: PRINT CHR$(32);: NEXT : PRINT
330 GO TO 210

Now RUN the program. Your amendments to Line 145 and the
DATA lines cause the records in RANDOM ANIMALS to contain
fields of varying length according to the animal and the name given
to it. The retrieval and display part of the program illustrates the
internal structure of any record you choose to examine. Why don'’t
you alter some of the DATA lines to deliberately make the
combined length of an animal and its name greater than the 16
characters that the new Line 115 allows for? If you now RUN the
program again and examine the record concerned (and the one
immediately after it) you will be able to observe the effects that
writing too long a record will have on the integrity of the data you
store.

28

Applesoft libraries

Applesoft BASIC is a development of the Microsoft BASIC used on
anumber of microcomputers. This section provides an opportunity
to see Applesoft BASIC being used in a variety of applications and
it is hoped that, by being exposed to a wide range of Applesoft
statements and commands, you will best get to grips with the
language. Libraries of routines will be developed covering text
formatting, graphics and file handling. These sections of the guide
are based around ‘hands-on’ tutorial sessions in which, by
following the material presented, you will be able to build up
libraries of Applesoft routines. These routines may be appended to
your own programs and called upon by them. When you are
familiar with the Applesoft and DOS statements and commands
they use, you can dispose of them and so save memory and
processing time. Having booted up the system from your work disk
in Drive 1 enter NEW and then type in the following program
which you should NOT save on your disk.

10 REM #%x EXECUTIVE #%x

15 HOME : INPUT "FILENAME ? ";FI$

20 PRINT CHR$(4);"OPEN ";FI$

25 PRINT CHR$(4);"DELETE ";FI$

30 PRINT CHR$(4);"OPEN ";FI$

35 PRINT CHR$(4);"WRITE ";FI$

40 POKE 33,30

45 LIST 10,70 : REM LINES TO BECOME AN EXEC FILE
50 PRINT CHR$(4);"CLOSE"

55 POKE 33,40

60 PRINT "EXECUTIVE REMOVED"

65 PRINT "ENTER 'EXEC EXECUTIVE' TO RECOVER"
70 DEL 10,70

When you have finished typing the program in enter RUN and you
will be prompted by the question FILENAME? ... you should
enter EXECUTIVE in response. The program stores itself as a text
file on disk and can be recovered using the DOS command EXEC.

29

Format library

The Apple’s screen is normally one of 24 lines, each of 40 character
columns. As characters are sent from the computer to the TV screen
the display is built up line by line from the very top left. When the
screen is full the whole text display scrolls upwards one line to
make more room for more text to be added at the bottom. There are
very few applications in which uncontrolled scrolling output of
thiskind will produce acceptable results. A far more attractive and
communicative effect will be achieved if paged format is
implemented in your programs. The idea is to present a ‘page’ of
the program with information and prompts for input carefully
positioned on the screen for maximum visual impact and clarity.
When the user has interacted with this page the screen is cleared
and the next page is presented. A number of statements unique to
Apple BASIC can be involved in the provision of effective paged
formatting. Boot up the Apple from the workdisk you have
prepared and enter NEW. Enter EXEC EXECUTIVE and for a few
seconds the disk drive will operate. When it stops enter LIST and
see what you have ‘executed’. Now enter the following program
lines carefully:

1000 HOME : RETURN : REM CLEAR SCREEN

1010 INVERSE : RETURN : REM REVERSE VIDEO

1020 NORMAL : RETURN : REM NORMAL VIDEO

1030 FLASH : RETURN : REM FLASHING VIDEO

1100 PRINT ST$: RETURN : REM PRINT STRING & LINEFEED

1110 PRINT ST$;: RETURN : REM STRING WITHOUT
LINEFEED

1200 FOR UL = 1 TO 40 : PRINT "-";: NEXT UL : RETURN :
REM UNDERLINE

Amend Line 45 in the EXECUTIVE lines to read
45 LIST 1000,1999

and then enter RUN. When prompted for FILENAME? enter
FORMAT LIBRARY and all the program lines in the range
mentioned in Line 45 will be filed away on the disk.

30

To append library routines to a program, type in EXEC followed
by the library name and press RETURN. The whole library will
load from disk and you should then delete any of the library’s
routines that you don’t want by entering their line numbers and
pressing RETURN.

(@)Clearing the screen Wherever the cursor is positioned on the
screen, when you enter HOME it disappears, the screen clears and
the cursor is ‘homed’ to the top left of the screen. Try it now, enter
HOME and see what happens. Remembering that we still have a
number of program lines (numbered 1000 to 1200) sitting in the
Apple’s memory, let’s enter some more as follows:

100 GOSUB 1000

110 GOSUB 1200

120 GOSUB 1010

130 ST$ = "FORMAT LIBRARY DEMO"
140 GOSUB 1100

150 GOSUB 1020

160 GOSUB 1200

999 END

If you don’t recognize the BASIC statement GOSUB suffice it to
say that GOSUB is short for ‘go to the subroutine’ and that each line
number mentioned after GOSUB in this case is the line number ofa
section of the library you entered earlier. So, Line 100 says ‘go to
the subroutine at Line 1000 ...’ and the subroutine at Line 1000
happens to be the one that clears the screen. Now enter RUN to see
what our demo program does. As you can see, we have a way of
presenting a page title at the top of the screen.

A number of other screen clearing statements are available by
issuing a CALL to built-in subroutines in the Apple’s memory.
CALL —958 clears the screen everywhere to the right and below
where the cursor is. CALL —868 clears the rest of just the line that
the cursor is on. Both these CALL statements can be used
extensively in formatting screen displays.

31

(b) Positioning the cursor Suppose we hadn’t wanted everything
to start printing at the top left? Carefully enter the lines listed
below.

1300 HTABH :H = 0 : RETURN
1310 HTAB (PEEK(36) + H) : H = 0 : RETURN
1320 VTAB V :V = 0 : RETURN
1330 VTAB (PEEK(37) + V) : V = 0 : RETURN

HTAB and VTAB, followed by an appropriate value, allow you to
put the cursor anywhere on the screen. The Applesoft statement
PEEK lets you look into any of the memory locations in the Apple. It
so happens that memory locations 36 and 37 contain the
computer’s record of the present horizontal and vertical position of
the cursor— you’ll see shortly how we use this information in Lines
1310 and 1330. Enter two more lines into your program:

105 V = 2 :GOSUB 1320
165 V = 4 : GOSUB 1330

and RUN the program again. What has changed ? You can see that
the whole title frame has moved down one line from the top and the
cursor ends up four lines further down that it did! Can you see how
the lines we most recently added caused this effect? Program Line
105 sets the value of V as 2 and then goes off to the subroutine at
Line 1320. This subroutine uses the VTAB statement to put the
cursoronscreenline V . .. inthis case on Line 2. Program Line 165
sets the value of V as 4 and then goes off to the subroutine at Line
1330. This subroutine adds the value of V onto whatever value is
already present in memory location 37 and then puts the cursor on
the screen line thatresults . .. sothisroutine puts the cursor V lines
away from wherever it was before! Check for yourself what effect
the values for V in these lines have by changing program Lines 105
and 165 to read

105 V =10 : GOSUB 1320
165 V = —5: GOSUB 1330

32

RUN the program again and see what happens. Experiment a
little by putting in values of your own for V — but remember that
there are only 24 lines on the screen. If your instructions result in
the Apple trying to put the cursor above Line 1 or below Line 24
you’ll be in trouble! So far we have been controlling the vertical
position of the cursor. The subroutines at 1300 and 1310 are used to
control the horizontal position of the cursor in just the same way.
You simply set a value of H before going to the subroutine, instead
of setting V. The text screen has forty horizontal positions.
Experiment a little with it. When you have finished experimenting
with this horizontal cursor control carefully enter the following
program line

1900 GOSUB1000:V =2:GOSUB 1320 :GOSUB 1200
:GOSUB 1010 : GOSUB 1100 : GOSUB 1020 : GOSUB 1200
:V=2:GOSUB 1330 : RETURN

This multiple statement line is a subroutine made up of other
subroutines. You will be able to use it repeatedly to provide a title
frame for your ‘pages’. Since it is in fact a condensed version of
several of the program lines you previously entered you should
now get rid of those lines. To do this enter DEL 100,999 ... if you
now enter LIST the program lines in memory will scroll up on the
screen. These lines represent the present state of development of
your text formatting library. Recover your important EXECUTIVE
file by entering EXEC EXECUTIVE. Amend Line 45 so that it reads
LIST 1000,1999 and then enter RUN ... store the library on disk
under FORMAT LIBRARY.

Some other interesting statements related to the cursor are CALL
—998,CALL —922, CALL —1008 and CALL —1036. These move the
cursor one place up, down, left and right respectively. Can you see
how they might be used in place of VTAB and HTAB in the library ?

33

(c) Text windows The Apple text screen can be reduced in size
temporarily so that, for example, titles and input prompts may
remain unaltered on the screen while other parts of the text display
change. Add the following program lines to the FORMAT
LIBRARY.

1400 POKE 32,LM : LM = 0 : GOSUB 1450 : RETURN
1410 POKE 33,WD : WD = 40 — PEEK (32)
: GOSUB 1450 : RETURN
1420 POKE 34,TM : TM = 0 : GOSUB 1450 : RETURN
1430 POKE 35, ABS(PEEK(34)—24) — BM
: BM = ABS(PEEK(34)-24)
: GOSUB 1450 : RETURN
1440 POKE 32,0 : POKE 33,40 : POKE 34,0 : POKE 35,24
: GOSUB 1450 : RETURN
1450 PRINT CHR$(1):RETURN

You will remember that the statement PEEK allows us to look
into memory locations to see what’s there ... the program below
uses POKE to put new values into locations 32 to 35 in the Apple’s
memory which contain information about the present settings for
left margin, screen width, top margin and bottom margin
respectively.

100 ST$ = "TEXT WINDOW DEMO" : GOSUB 1900
120 LM = 10 : GOSUB 1400

130 WD = 20 : GOSUB 1410

140 TM =5:V =TM : GOSUB 1320 : GOSUB 1420
150 BM = 10 : GOSUB 1430

200 FORI = 1TO 500 : PRINT I;" ";: NEXT I

210 GOSUB 1440 : V = 8 : GOSUB 1320

220 TM = 4 : GOSUB 1420 : GOSUB 1000 : GOSUB 1010
230 PRINT "DID IT WORK?™

240 V = 3 :GOSUB 1330 : GOSUB 1010

250 PRINT "CHANGE THE VALUES"

260 PRINT "IN LINES 120-150"

270 PRINT "TO VARY TEXT WINDOW"

280 GOSUB 1020 : V = 3 : GOSUB 1330

290 LIST120,150 : GOSUB 1440

999 END

34

By altering the values in Lines 120-150 you can set up a text
window within which all output to the screen will be confined.
Remember that the whole screen is still only 24 lines deep by 40
columns wide; so if you enter nonsense values for LM, WD, TM
and/or BM you’ll get a nonsense text window! When you have
finished experimenting you can get rid of the non-library lines of
this program by entering DEL 100,999.

(d) Tidy data input To get a neat layout for our page format we
also need to have ways of controlling the position of prompts for
input within whatever text window is defined. Add the following
lines to your FORMAT LIBRARY and store it away on disk using
EXECUTIVE.

1500 GOSUB 1300 : GOSUB 1320 : GOSUB 1010 : GOSUB 1110
: GOSUB 1020 : PRINT SPC(BL — LEN(ST#$));: RETURN
: REM SETS POSITION

1505 FOR J=1 TO RL : PRINT "-";: NEXT : H= 0 — RL
: GOSUB 1310 : RETURN

1510 INPUT IS$: I$=LEFT$(I$,RL) : RETURN

1520 GOSUB 1500 : GOSUB 1505 : GOSUB 1510 : RETURN

Enter the following program lines to demonstrate how we might
use these new extensions to the library:

100 ST$ = "PAGED INPUT DEMO"

105 GOSUB 1900

110 V=8:H =5 :ST$ = "YOUR SURNAME" : BL = 15
115 RL=20 : GOSUB 1520 : I$(1) = I$

120 V=10:H =5 :ST$ = "YOUR FORENAME" : BL = 15
125 RL=15 : GOSUB 1520 : I$(2) = I$

130 V=12:H=1:ST$="AGE":BL =5

135 RL = 3 : GOSUB 1520 : I$(3) = I$

140 V=12:H =10:ST$ = "SEX M/F" : BL = 10

145 RL = 1 : GOSUB 1520 : I$(4) = I$

150 V=12:H=122:ST$="JOB":BL =5

155 RL=15 : GOSUB 1520 : I$(5) = I$

999 END

35

Now RUN the program and observe how the program lines control
the positioning of the input prompts on the screen. It is important
to remember that you can vary the main control section of your
program (lines below 1000 in all our examples) in whatever way
you wish. For instance the effects achieved by the program you
have presently in memory could be replicated by changing the
control module to use information in READ and DATA lines to
format the screen.

100 ST$ = "PAGED INPUT DEMO"

105 GOSUB 1900

110 RESTORE : READ N : REM 'RESTORES' DATA & READS N
115 DIM I$(N) : REM SETS ARRAY SIZE FOR N INPUTS
120 FORI=1TON

130 READ V,H, ST$, BL,RL

135 REM VTAB , HTAB , PROMPT , BOX , RESPONSE
140 GOSUB 1520

150 I$(I) = I$

160 NEXT I

900 DATA 5 : REM N = 5 FIVE INPUT BOXES

910 DATA 8,5, "YOUR SURNAME", 15, 20

920 DATA 10, 5, "YOUR FORENAME" , 15, 15

930 DATA 12,1, "AGE", 5, 3

940 DATA 12, 10, "SEX M/F", 10, 1

950 DATA 12, 22, "JOB", 5, 15

999 END

While at first sight this version appears more complicated than the
first version, it has considerable advantage over it. Extra input
boxes can be very easily catered for by changing the value for N
in Line 900 and adding DATA line(s) numbered 910 and above.
Any alterations to the data input format are very straightforward
to implement by editing the particular values in these DATA
statements. Notice the Applesoft statement DIM is used to reserve
space for the array I$(*), according to the value of N stored in Line
900. Before leaving this section make sure your entire FORMAT
LIBRARY is stored on disk using EXECUTIVE.

36

Graphics library

Applesoft high resolution graphics are easy to use from within
BASIC programs and this section provides some simple routines to
demonstrate how to do it. Enter NEW to clear memory and enter the
following lines

3000 HGR : RETURN : REM CLEARS & ACCESSES PAGE 1
3010 HGR2 : RETURN : REM CLEARS & ACCESSES PAGE 2
3020 POKE —-16304,0 : POKE —16297,0 : POKE —16300,0

: REM ACCESSES PAGE 1
3030 POKE —-16304,0 : POKE —16297,0 : POKE —16299,0

: REM ACCESSES PAGE 2
3040 HOME : TEXT : RETURN

: REM CLEARS TEXT SCREEN AND RETURNS TO IT
3050 HCOLOR = CO : RETURN

: REM SETS THE COLOUR FOR PLOTTING- 0 TO 7

The Apple can store two high resolution pictures at any one time
— Page 1 and Page 2. The lines above allow you to control access to
these picture pages. Lines 3000 and 3010 put graphics pages on
your screen and clear them of whatever they have on them at the
time. Any picture previously there will disappear before your eyes
and your program can start drawing! Lines 3020 and 3030 also get
into your graphics pages but this time any picture you have on
these pages will not be cleared. You can keep a picture in memory
and gradually work on it as your program acquires more and more
data. Graphics produced on these graphics pages consist of dots.
The picture you see is made up of lines and patches which are
themselves made up of dots. Every dot is a spot of light produced at
a particular horizontal (X) and vertical (Y) position and there are
53760 such positions on the Apple’s screen. The library routines
use the fundamental high resolution statements HGR, HCOLOR
and HPLOT to perform commonly required operations. They
require the control module of any program using them to pass the
X,Y co-ordinate information needed to perform a particular task.

37

Add the following lines to your library and then — having
amended Line 45 to read LIST 3000,3999 — use your EXECUTIVE
program to save them as a disk file named GRAPHICS LIBRARY.
3100 HPLOT XP,YP : RETURN : REM PLOTS A POINT
3105 REM PLOTS A BLOB - POINTS ALL AROUND A POINT
3106 IFYP>1900RYP<10ORXP>2780RXP<1
THEN GO TO 3109

3107 FOR PL = YP-1 TO YP+1 : HPLOT XP-1,PL
: HPLOT XP,PL : HPLOT XP+1,PL : NEXT

3108 FOR PL = XP-1 TO XP+1 : HPLOT PL,YP-1
: HPLOT PL,YP : HPLOT PL,YP+1 : NEXT

3109 RETURN

3110 HPLOT XL,YL TO XH,YH : RETURN : REM PLOTS A LINE

3120 HPLOT XL,YL TO XL,YH TO XH,YH TO XH,YL TO XL,YL
: RETURN : REM DRAWS A FRAME

3130 FOR PL = YL TO YH : HPLOT XL,PL TO XH,PL : NEXT
: RETURN : REM FILLS A 'BOX'

3200 REM DRAWS A KIND OF CIRCLE

3201 FORPL = (0—R) TOR

3202 XD = ((R*R)— (PL*PL))"0.5

3203 XD =XP+ XD:YD =YP + PL

3204 HPLOT XP,YP TO XD,YD

3205 XD = (((R*R)—(PL*PL))~0.5)%(—1)

3206 XD =XP+ XD:YD = YP + PL

3207 HPLOT XP,YP TO XD,YD

3208 NEXT PL

3209 RETURN

In the routine beginning at Line 3105 the XP,YP co-ordinate pair
defined is checked to see if it lies within the range of the screen
before going on to plot a ‘blob’ at the point specified. The Apple’s
high resolution screen lets you plot points 0 to 279 across the
screen and points 0 to 191 down it. In Page 2 graphics all these
points can be seen but no text can be printed on the screen. In Page
1 fourlines are left at the bottom of the screen which can be used to
display text but points with Y values of more than 159 will not be
visible.

38

Add the following program control module to produce a
program which takes advantage of Page 1’s four text lines to guide
you through a demonstration program using some of the library
routines.

100 GOSUB 3000 : CO = 3 : GOSUB 3050
105 ST$ = "GOSUB 3000 PUTS YOU IN PAGE 1 HIRES"
: GOSUB 900
110 XL =50:YL = 150 : XH = 130 : YH = 30 : GOSUB 3120
115 ST$ = "GOSUB 3120 DRAWS A FRAME" : GOSUB 900
120 XP = 155 : YP = 120 : GOSUB 3100
125 ST$ = "GOSUB 3100 PLOTS A POINT" : GOSUB 900
130 XP = 200 : YP = 50 : GOSUB 3105
135 ST$ = "GOSUB 3105 PLOTS A 'BLOB'" : GOSUB 900
140 XL = 150:YL = 10 : XH = 250 : YH = 40 : GOSUB 3130
145 ST$ = "GOSUB 3130 FILLS A BGX" : GOSUB 900
150 XP = 100 : YP = 130 : R = 20 : GOSUB 3200
155 ST$ = "GOSUB 3200 FILLS A KIND OF CIRCLE"
: GOSUB 900 : REM RADIUS = R
160 XL =110:YL =10:XH = 25 : YH = 115 : GOSUB 3110
165 ST$ = "GOSUB 3110 PLOTS A LINE" : GOSUB 900
210 ST$ = "PROGRAM ENDED" : GOSUB 900
220 HOME : TEXT : END
900 VTAB 21 : CALL —958 : PRINT ST$: RETURN
910 REM CURSOR TO LAST FOUR LINES,CALL—-958 CLEARS
SCREEN ‘
920 PRINT "PRESS ANY KEY TO CONTINUE "; : GET S$
: RETURN : REM WAITS TILL YOU ARE READY

Now RUN the program and observe its effects. Examine the
program lines and observe how, according to the routine being
used, values of XL,XH,YL,YH,XP or YP have to be passed from the
control module of the program to the library routines. Play about
with these values by amending the program lines and see what
effects you can produce — notice that XL.and YL must normally be
lower than XH and YH to get the effect you want — notice that
higher values for Y plot lower down on the graphics screen! When
you have finished playing with this enter DEL 100,999 to get rid of
the existing progrdam control module.

Now let’s get down to something useful!

39

3300 REM ROUTINE TO CONSTRUCT SCALED AXES
FOR GRAPHING DATA
3301 REM NEEDS (XL(X LOW),YL(Y LOW),XH(X HIGH),
YH(Y HIGH),
XD(X DIVISIONS),YD(Y DIVISIONS) PASSING TO IT
3302 YE = (INT(150/YD) * YD)
: YI = 155 — YE * (ABS(YL)/(ABS(YL)+YH))
:IF YL = > 0 THEN YI = 155
3303 XE = INT (240/XD)*XD : HPLOT 20,YI TO 20 + XE,YI
3304 XI = XE * (ABS(XL)/(ABS(XL)+XH)) : XE = INT(240/XD)
:IF XL = > 0 THEN XI = 0
3305 HPLOT 20+XI,155— YE TO 20+XI,155 : YE = INT(150/YD)
3306 FORPL = 0 TO XD : XP = 20 + (PL*XE)
: HPLOT XP,YI-2 TO XP,YI+3 : NEXT PL
3308 FORPL = 0TO YD : YP = (155 — (YExYD)) + (PL*YE)
: HPLOT 17 + XLYP TO 22 + XL, YP : NEXT PL
3310 RETURN
3320 XP = ((XP—XL)/ (XH—XL) * (XExXD)) + 20 : RETURN
3330 YP = 155 — ((YP-YL)/ (YH —YL)) * YE * YD)
: RETURN

This routine requires you to send it values for the maximum and
minimum X and Y values that are to be encountered and
(XL,XH,YL,YH) and the number of scale divisions required along
each axis (XD and YD). The routine then automatically adjusts the
scaling to take best advantage of the screen space available. The
routine is quite complicated because the Apple has quite an odd
way of numbering its points in the Y dimension — whereas one
would normally expect the X,Y point 0,0 to be at the bottom left of
the display it is in fact at the top left on the Apple! Unlike the other
routines in this library this routine expects to be passed values YH
that are higher than those of YL. This routine is worth keeping in
your library because there are lots of situations in which being able
to graph data in this way can be useful.

40

The following control module represents one way of using the
routine.

100 REM =**x DATA PLOTTER #*x**
105 GOSUB 3040 : ST$ = "DATA PLOTTER" : GOSUB 1900
110 V =6:GOSUB 1320 : INPUT "MAXIMUM X VALUE ?";XH
115 INPUT "MINIMUM X VALUE 7 ";XL
120 INPUT "X-AXIS DIVISIONS ?";XD
130 V=10:GOSUB 1320:INPUT"MAXIMUMY VALUE ?";YH
135 INPUT "MINIMUM Y VALUE ? ;YL
140 INPUT "Y-AXIS DIVISIONS ?"; YD
145 IF YH > YL AND XH > XL AND XD > 0 AND YD > 0
THEN GO TO 155
150 ST$ = "CAUTION" :GOSUB 1030 :GOSUB 1100
:GOSUB 1020
: ST$ = "SCALE ERROR ... ANY KEY TO RESTART"
: GOSUB 1110 : GET S$: GO TO 100
160 TM = 20 : GOSUB1420 : LM = 4 : GOSUB1400
170 GOSUB 3000 : CO = 3 : GOSUB3050 : GOSUB3300
200 GOSUB 1000 : INVERSE : PRINT "X";
201 NORMAL : PRINT " ";XL;" TO ";XH;SPC(4);
202 INVERSE : PRINT"Y"; : NORMAL
: PRINT SPC(2);YL" TO ";YH : PRINT
205 INPUT "X-VALUE ? ";X$: XP = VAL(X$)
206 IF X$ = "" THEN PRINT "PROGRAM ENDED"
: PRINT"TYPE IN <RUN> TO START AGAIN" : END
207 GOSUB 3320
210 INPUT "Y-VALUE ? ";Y$: YP = VAL(Y$)
211 IF Y$ ="" THEN GO TO 200
212 GOSUB 3330
220 GOSUB 3105
230 GO TO 200

Having entered this control module you will also need to EXEC
into memory your FORMAT LIBRARY since a number of its
routines are also called from the program. Try entering different
ranges for the scales of the X and Y axes— you will be prompted on
the screen to enter these values and told if they don’t make any
sense. To leave the program press RETURN when being asked for
an X value.

41

File library

Enter NEW to clear memory and then enter the following lines as
the first part of our file-handling library. We will build this library
up gradually, just as earlier we built up a library of screen
formatting routines. Pay particular attention to entering the spaces
within quotation marks where they are present and to entering any
commas, semicolons and quotation marks in exactly the right
places.

2000 PRINT CHR$(4);"OPEN ";FI$;",D";D : RETURN
:REM OPENS DATA FILE FI$ ON DRIVE D
2010 PRINT CHR$(4);"READ ";FI$: RETURN
:‘REM INDICATES THAT FILE IS TO BE READ FROM
2015 PRINT CHR$(4);"WRITE ";FI$: RETURN
‘REM INDICATES THAT FILE IS TO BE WRITTEN TO
2020 PRINT CHR$(4);"OPEN ";FI$;",L";FL;",D";D : RETURN
:REM OPENS RANDOM ACCESS FILE FI$ WITH
RECORDS FL. CHARACTERS LONG ON DRIVE D
2030 PRINT CHR$(4);"READ ";FI$;",R";R : RETURN
:REM INDICATES THAT RECORD R IN THE FILE IS TO
BE READ FROM
2035 PRINT CHR$(4);"WRITE ";FI$;",R";R : RETURN
:REM RECORD R IN THE FILE IS TO BE WRITTEN
2040 PRINT CHR$(4);"CLOSE" : RETURN
:REM CLOSES ALL OPEN FILES
2045 PRINT CHR$(4);"CLOSE ";FI$: RETURN
:REM CLOSES FILE FI$
2090 PRINT CHR$(4);"MON C,1,0" : RETURN
:REM TURNS ON "MONITORING" OF DISK
COMMUNICATIONS
2095 PRINT CHR$(4);"NOMON C,,O0" : RETURN
:REM TURNS "MONITORING" OFF

Enter EXEC EXECUTIVE and, when the file is loaded, amend Line
45 to read LIST 2000,2999 ... now you are about to work on the
FILE LIBRARY all its lines will be in this range. Now RUN the

program and store the file as FILE LIBRARY.

42

(@) Simple record keeping The program below creates random
access file records containing one field.

100
110
120
130
140
200
205
210
215
220
225

230

235
240
245
250
255

260
265

270
275
280

REMx*#* RECORD MAKER ##x

INPUT "ENTER A FILENAME "; FI$

INPUT "ENTER THE DRIVE NUMBER ";D

INPUT "MAXIMUM RECORD SIZE ? ";FL

PRINT : PRINT

INPUT "ENTER RECORD NUMBER ";R

PRINT : IF R < 1 THEN 200

PRINT "ENTER AN APPROPRIATE RECORD"

PRINT "(NB. DO NOT INCLUDE ANY COMMAS!)"
PRINT "OR PRESS RETURN TO QUIT PROGRAM" : PRINT
INPUT RCS$: IF LEN(RC$) > FL THEN FLASH

: PRINT "TOO LONG" : NORMAL : PRINT : GO TO 210
IF RC$ = "" THEN PRINT

: PRINT "FILING FINISHED" : END

GOSUB 2090 : REM LET'S SEE WHAT HAPPENS
GOSUB 2020 : GOSUB 2035

PRINT RC$

GOSUB 2040

REM ABOVE LINES OPEN FILE, STORE RECORD, CLOSE
FILE

GOSUB 2000 : GOSUB 2015 : PRINT FL:GOSUB 2040
REM ABOVE LINE STORES RECORD LENGTH

AT BEGINNING OF FILE

GOSUB2095 : REM TURNS OFF MONITOR

PRINT : PRINT

GO TO 200

If yourun this program now you can see the mechanism of a typical
simple file creation routine in operation. Notice that Line 2090 of
the file library uses the DOS command MON to let you ‘monitor’
what goes in and out of your data files. To create records with
multiple fields, Line 225 should be replaced by as many INPUTs as
necessary and Line 245 by a matching set of PRINT statements. To
read from the files created, a program using GOSUBs 2010 and
2030 (instead of 2015 and 2035) would be needed.

43

(b) A simple database A data file may be created from single field
records in which each record is made up of several data items
joined together into one long string. Such an approach has the
advantage of simplifying the file writing operations involved and
providing a general purpose mechanism for creating files of
different structures. DATA statements can be used as the means of
providing information about the name of the file, its structure and
its location. Enter, for a mailing list,

900 DATA "MAILSHOT" : REM FILENAME
905 DATA 7 : REM NUMBER OF FIELDS IN RECORD
906 DATA 1 : REM DRIVE NUMBER FOR STORAGE

Accompanying DATA statements can contain details of the
internal structure of each record, the lengths of each of the items
making it up and information of use in paging the sequence used to
input the data. Make sure that your values of position and length
combine sensibly as in the example below — ‘box’ is the total
length of the prompt and the spaces between it and the cursor.

910 REM VTAB,HTAB,PROMPT,BOX,RESPONSE
911 DATA 9,1,"TITLE",11,5

912 DATA 11,1,"SURNAME",11,20

913 DATA 13,1,"FORENAME",11,20

914 DATA 15,1,"ADDRESS 1",11,25

915 DATA 17,1,"ADDRESS 2",11,25

916 DATA 19,1,"ADDRESS 3",11,25

917 DATA 21,1,"POSTCODE",11,10

As long as the combined length of the field responses doesn’t
exceed 255 characters, a file of any structure can be built up by
changing the number and content of the DATA lines at Line 910
and upwards. Use EXECUTIVE to store any set of
structure-defining DATA lines you create on disk as a file. Amend
Line 45 of EXECUTIVE to read LIST 900,999 and when prompted
for FILENAME ?respond with the database file’s name, prefixed by
DATA. For the example above we would enter DATA.MAILSHOT
as the file’s name.

44

Additional lines will be needed in the library in order to make
sense of the DATA lines in the programs. Enter the following lines
and then use EXECUTIVE to store the whole library (Lines
2000-2999) on disk again.

2100 RESTORE : READ FI$,F,D : RETURN
2110 READ V,H,ST$,BL,RL : RETURN
2200 GOSUB 2110 : GOSUB 1520 : RETURN

(c) Creating the database To create a program which will allow
you to build up a database of your chosen structure, combine the
control module below with the FILE LIBRARY and with an
appropriate set of DATA statements as illustrated in the previous
section. The control module listed below uses routines from the
FORMAT LIBRARY and so they should be EXECed back into
memory from disk..

100 REM #*x SIMPLE DATABASE CREATOR #**x*

110 ST$ = "DATABASE CREATOR" : GOSUB 1900

120 PRINT "NEW FILE ? PRESS Y OR N ";: GET S$
: PRINT : IF S$ <> "Y" THEN 200

130 GOSUB 2100:GOSUB 2000:GOSUB 2015:PRINT 0
:GOSUB 2040

200 GOSUB 2100:GOSUB 2000:GOSUB 2010:INPUT R
:GOSUB 2040

210 ST$ = FI$: GOSUB 1900

220 R=R + 1:ST$ = "RECORD " + STR$(R)
:V=0:GOSUB 1330

230 GOSUB 1010 : GOSUB 1100 : GOSUB 1020

240 FL=F:RC$="":FORL1=1TOF

250 GOSUB 2200 : FL = FL + RL : RC$ = RC$ + I$

260 IF LEN(I$) < RL THEN FOR L2 = 1 TO (RL — LEN(I$))
: RC$ = RC$ + CHR$(32) : NEXT L2

270 NEXT L1

300 TM = 23 : GOSUB 1420 : GOSUB 2090

310 GOSUB 2020 : GOSUB 2035 : PRINT RC$: GOSUB 2040

320 GOSUB 2000 : GOSUB 2015 : PRINT R : GOSUB 2040

330 TM = 0 : GOSUB 1420 : GOSUB 2095

340 ST$ = "ENTER ANOTHER RECORD ? Y/N "

350 GOSUB 1900 : V = 2 : GOSUB 1330

360 GET S$: PRINT : IF S$ = "Y" THEN GO TO 200

370 PRINT : PRINT "ENTER <RUN> TO RESTART" : END

45

(d) Using the database To create a program using any database
that you have established from use of the previous program,
combine the control module below with the FILE LIBRARY, the
FORMAT LIBRARY and the DATA lines appropriate to the file by
EXECing them back into memory from disk.

100 REM x%x DATABASE READER #*x*x

110 GOSUB 2100:GOSUB 2000:GOSUB 2010:INPUT N
:GOSUB 2040

120 ST$=FI$ + " " + STR$(N) + " RECORDS":GOSUB 1900

130 ST$="WHICH RECORD":V=0:GOSUB1330

140 GOSUB 1010:GOSUB 1110:GOSUB1020

150 INPUT R:IF R <1 ORR > N THEN ST$="NO SUCH

RECORD":GOSUB 1030:GOSUB 1100:GOSUB 1020:GO TO 150

160 FL=F : GOSUB 2100 : FOR L1=1 TO F : GOSUB 2110
:FL=FL + RL : NEXT L1

200 GOSUB 2020:GOSUB 2030:INPUT RC$:GOSUB 2040

210 ST$=FI$ + " RECORD "+ STR$(R):GOSUB1900
:GOSUB 2100

220 P =1:FORL1 =1 TO F:GOSUB 2110

230 FL$=MID$(RC$,P,RL): REM TAKES RC$ TO BITS

240 GOSUB 1500 : PRINT FL$: P = P + RL : NEXT L1

300 PRINT : GOSUB 1200

310 ST$="READ ANOTHER RECORD ? Y/N "

320 GOSUB 1100:GOSUB 1200:V=—1:GOSUB 1330
:H=30:GOSUB 1300

330 GET S$:PRINT:IF S$="Y" THEN GO TO 120

340 PRINT : PRINT "ENTER <RUN> TO RESTART" : END

Notice that Line 200 gets a record from the file and information in
the DATA statements is used in Line 230 to correctly disassemble
the record — MID$ is used to take a section out of the middle of the
record’s single field. The section is RL characters long and starts at
character position P in the field. Bit by bit the field is disassembled
and Line 240 displays each section as it is obtained. Lines 220-240
could easily be adapted so as to select only certain fields for
display, to direct output to a printer, to sort alphabetically the
records in the file on the basis of the entries in one or more sections
of the records. A simple amendment to the database creation
program will allow you to change existing records — amend Line
220 to INPUT a value for R instead of simply incrementing the R
counter.

46

Peripheral slots

The Apple can communicate with lots of external devices through
interface cards located in its peripheral slots — the slots are
numbered 0 to 7. Conventionally Slot 6 is used for the disk drive
controller card and Slot 7 for a colour card. Slot 0 is always used for
a language card. Peripheral cards are available that will let your
Apple do tasks as diverse as digitizing TV pictures, creating
electronic music and converting the Apple into a digital storage
oscilloscope ... most of these tasks involve the use of custom
designed interface cards. Lots of devices can be connected to
interface cards using a standard data communications format. For
example, many printers and modems can be interfaced with the
Apple via an RS232 standard serial interface card. Probably the
most widely used peripheral, however, is the low cost dot-matrix
printer which accepts output of parallel format data from the Apple
through a parallel interface card — the de facto standard for such
communications is the Centronics standard. Your parallel
interface is best placed in Slot 1 because that is where lots of
commercially produced software expects to find it.

To send output to the printer in Slot 1 instead of the TV screen
the command PR#1 must be issued — PR#0 will return output to
the screen. Programs using a peripheral device in Slot 2 would use
PR#2 to send data to it. If the Apple tries to send output to a slot
withno card the system will ‘hang’and you will have to RESET the
Apple. The commands can be used directly from the keyboard to
get program listings and the like but in programs that are using
disks they should be sent as DOS commands in the form PRINT
CHR$(4);"PR#1". Having entered NEW to clear memory enter the
following lines.

4000 PRINT CHR$(4);"PR#";SL : RETURN

: REM SENDS OUTPUT TO SLOT SL
4005 PRINT CHR$(4);"PR#0" :RETURN

: REM RETURNS OUTPUT TO SCREEN

47

Having opened up communication with a particular slot, things
canbegin to get complicated! Unlike the TV screen the printer will
certainly be able to print in more than 40 columns and the desired
column width may have to be communicated to the printer. Many
printers using the Centronics standard can accept this information
in statements like CTRL—I80N which, when sent in a program in
the form PRINT CHR$(9);"80N", would be interpreted as a
command to set the print width at 80 columns. Unfortunately one
printer very commonly used with the Apple, the Epson MX-80
series, doesn’t conform to this standard and a POKE statement of
the form POKE 1656 + SL,W must be issued ... so, where the
printer card is in Slot 1 and you require a 70-column width the
statement POKE 1657,70 would have to be sent to the printer.

To add to the complexity, such printers as the Epson often
provide a variety of additional facilities such as expanded print,
proportional print and underlining. To make use of these features
your programs must send the particular sequence of control
characters that your make of printer is programmed (through its
own internal circuitry) to recognize as the signs to act in a certain
way. These codes usually consist of one or more of the ‘invisible’
ASCII codes that we came across earlier. For example, to put your
Epson MX-80 into the mode where it doubles the size of the
characters it prints, you must send CHR$(14) in front of the string
you want to print ... PRINT CHR$(14); "FRED" prints a big version
of FRED. To do exactly the same kind of thing on the widely used
Centronics 730 series of printers you would have to PRINT
CHR$(27);CHR$(14);"FRED". The idea of using ‘libraries’ of
routines appended to your program really comes into its own when
we are using printers. The control module of your program can be
set up to call a subroutine that gives underlining, or expanded print
or whatever. The actual contents of the PRINT LIBRARY will vary
according to which printer is to be used.

48

The following lines might form the basis of an EPSON LIBRARY.

4100 PRINT CHR$(14);;RETURN:REM EXPANDED PRINT
4110 PRINT CHR$(20);;RETURN:REM CANCELS EXPANDED
4120 PRINT CHR$(15);:RETURN:REM CONDENSED PRINT
4130 PRINT CHR$(18);;RETURN:REM CANCELS CONDENSED
4140 PRINT CHR$(27);CHR$(69);:RETURN:REM EMPHASIZED
4150 PRINT CHR$(27);CHR$(70);:RETURN

:REM CANCELS EMPHASIZED

In addition to the complexity brought about by the existence of
different conventions that are used for controlling printer mode,
the particular characteristics of the printer interface card being
used may vary. For example, some of the control characters the
Epson MX-80 needs may be recognized and acted upon by the
printer card itself and never get to the printer. Such a library can
only really be developed by reference to the manual accompanying
a particular printer and by reference to the characteristics of the
interface card being used, but the concept of print statement
libraries like this is becoming widely used by software developers.
The arrival of the new generation of printers like the Epson FX—80
makes their use very desirable. Such printers offer a huge range of
facilities including powerful formatting capability, graphics
printing, user definable character sets, multiple typefaces,
underlining, superscripts and subscripts all of which have to be
initiated by sequences of control characters. Inclusion of these
characters time after time with a program would be wasteful of
memory and very prone to error. When buying your printer and
printer interface equipment make a special point of finding out just
what facilities are available — and whether they can be easily
accessed from your Applesoft programs!

Many peripheral devices send data to the Apple rather than
receive from it. To open the Apple up to these devices commands of
the form IN#1 must be used — IN#0 returns ‘input’ to the Apple’s
keyboard.

49

Software

A very large proportion of the typical Apple user’s software needs
can probably be catered for by access to a relatively small number o.
software ‘packages’.

(a)Spreadsheets These allow you to use the calculating power of
the computer to manipulate the large amounts of numerical data
involved in financial modelling and projection. The user’s
involvement in instructing the computer is limited to the use of a
range of standard functions that allow him to enter data into
various parts of the sheet and then set up the mathematical
relationships that project values into other parts of the sheet from
the data entered. The best known spreadsheet package for the
Apple is Visicalc but a rival package, Multiplan, offers some more
advanced features such as variable column widths and sorting of
entries alphabetically or numerically.

(b) Database packages These provide computer-based filing and
data retrieval facilities. According to the nature of the data to be
stored, the package is used first to create custom-designed data
entry ‘forms’ on the screen that provide robust and user-friendly
procedures to allow for the input and checking of data. A variety of
different file structures can be created to suit the particular data
being handled. Once entered, any individual record can be viewed
on the screen and amended as details within it become outdated.
The whole file can be periodically rearranged alphabetically,
numerically or according to a data and time contained within key
fields of the record. A variety of standard ‘report’ formats can be
defined which will give printout of tabular data or labels or index
cards using selected fields and records from the data file. There are
many well regarded database packages available including Visifile
(the companion to Visicalc) and an excellent new package, Quick
File I1, is available to Apple //e users. This package provides very
speedy data processing and considerable flexibility of input and
report configuration.

50

(c) Graphics packages Much of the data contained within
spreadsheet files and databases can be used more effectively in
graphical rather than numerical form. Packages are available that
can accept data from such sources (as well as directly through the
keyboard) and plot from it line graphs, bar charts, pie diagrams and
scattergrams. A fundamental limitation of the Apple with normal
use of Applesoft is its inability to mix text and graphics. Graphics
packages are usually designed to overcome this limitation and
provide you with ways of scaling and labelling any diagrams you
produce. Apple Plot and Apple Business Graphics are good
examples of this type of software.

(d)Word processing packages Intheir simplest form, these allow
you to use the computer as a typewriter to enter and format letters,
reports and other documents for subsequent output on a printer.
The principal advantages of using the micro as a word processor
are the ease of error correction at the time of entry, the ability to
store the document on disk for later retrieval or amendment as
required and the opportunity to use different typefaces,
justification and emphasized printing when the document is
printed out. A wide variety of word processing packages are
available for the Apple, but all those designed to run on Apple][
have to come to terms with the machine’s 40-column screen
presentation of upper-case characters only. Word processing really
needs an 80-column screen and the use of upper- and lower-case
characters; so all word processing systems for the Apple][involve
some compromise. The cheaper ones mainly compromise the user
in that they don’t give an entirely satisfactory screen presentation
— although the quality of the document when printed out on paper
can be as good as the printer allows it to be. Dearer systems often
involve the use of an 80-column card in order to make the screen
appearance of the document during editing more acceptable. The
variety of hardware and software combinations that this can
involve is considerable.

51

Many word processing packages of quality are available (see
Windfall April 1983) including, for those who have the Z80
softcard and CP/M, the very sophisticated WordStar package. It’sa
significant fact that the most important of the enhanced features
included in the Apple //e are those that provide for much
improved word processing capability. Applewriter // is the word
processing package developed to take advantage of the Apple //e’s
improved facilities. Among a range of facilities this package offers
the mailmerging capability which allows the personalizing of a
standard letter with names and addresses of a mailing list file.

The DIF format Lots of software packages provide facilities for
the passing of data from one package to another — for example the
passing of numerical data entered in Visicalc into Visifile for
sorting and incorporation in reports. A standard format for data
storage, the Data Interchange Format (DIF), is often made use of
for this purpose. Apple’s Business Graphics package can for
example accept data in the DIF format. It’s worth checking that
your software packages are in some way compatible with each
other if data you use in one is at all likely to be used in any of the
others.

Extensions

(@) Improved garbage collection Apple programs using lots of
string variable data will sometimes stop, unannounced and
apparently do nothing for minutes, hours even, as a result of the
‘garbage collection’ routine built into the Apple’s operating
system. Most books say all you can do is include a line like X =
FRE(0) in the parts of your program where most string handling is
going on. This forces garbage collection to take place more often —
youdon'’t save any time overall, but you do know what is going on!
The line below checks how much string memory is left and gives
you a warning before starting the garbage collection routine.

IF PEEK(112)—-PEEK(110) < 4 THEN FLASH
:PRINT "COLLECTING GARBAGE" : NORMAL : X = FRE(0)

52

However, a recent article presented a method of drastically
reducing the time spent on garbage collection in programs
handling lots of string data. This garbage collection routine is
written by Cornelis Bongers and was published in MICRO, No 51,
August 1982 (‘Straight garbage collection for the Apple’). The
routine is also available in the Ampersoft package published by
MICRO SPARC, INC (The NIBBLE magazine), P.O. Box 639,
Lincoln, MA 01773 USA. Ampersoft contains, apart from the
garbage collection routine, a sophisticated PRINT USING routine,
amatrix handling routine (Inverse, Transpose, Identity, Multiply,
etc.), a fast sort routine and a routine to store quickly and recall
numeric arrays to/from disk. Ampersoft requires a 16K RAM card.
Ampersoft and DOS reside in the RAM card, so leaving 46K of free
memory for the user. Type the progam printed below, and the
DATA lines on the next page, carefully into your Apple —you will
only have to do it once! SAVE it all on disk and then RUN it.

10 REM #*x NOGARBAGE MAKER ***

20 READ FI$,LOC,LE

30 FORL = LOC TO (LOC + LE — 1)

40 READ V : POKE L,V : NEXT L : PRINT

80 PRINT CHR$(4);"BSAVE ";FI$;",A";LOC;",L";LE
90 END

A binary file called NOGARBAGE will be created on your disk —
this is the file that you need. Make the very first line of any program
using it

1 PRINT CHR$(4);"BRUN NOGARBAGE":CLEAR

Include &FRE(n) in any part of your program where much string
handling is going on e.g., in a line of the form

10 &FRE(4):REMHEREN=4, ANDN=*256 IS THE AMOUNT OF
RAM BELOW WHICH GC WILL BE FORCED

This forces a garbage collection routine which is much faster than
the normal one — and saves you lots of time!

53

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

DATA "NOGARBAGE",36864,608,1

DATA 169,19,141,246,3,169,144,141,247,3,169,0
DATA 133,115,169,144,133,116,96,201,189,208,53,32
DATA 177,0,32,217,247,24,160,1,162,254,181,111
DATA 149,64,181,157,149,68,200,177,155,117,157,149
DATA 62,232,208,238,160,0,32,44,254,24,202,181
DATA 67,233,0,149,110,232,240,247,32,183,0,201
DATA 44,240,204,96,201,214,240,3,76,201,222,74
DATA 133,23,32,177,0,32,187,222,201,201,208,8
DATA 32,33,146,102,23,32,177,0,41,15,240,11

DATA 24,101,110,166,109,228,111,229,112,144,7,165
DATA 23,48,3,32,164,144,32,177,0,201,44,208

DATA 28,32,177,0,32,227,223,133,133,132,134,32
DATA 106,221,32,232,226,165,23,16,3,32,78,232
DATA 165,18,32,99,218,76,184,222,133,161,32,110
DATA 145,32,128,145,176,59,228,175,229,176,144,245
DATA 166,6,240,241,224,3,144,20,177,157,9,128
DATA 145,157,136,48,228,177,157,200,145,252,136,185
DATA 252,0,176,240,160,0,132,161,177,157,145,252
DATA 169,255,200,202,240,2,177,157,145,252,200,169
DATA 255,145,252,48,192,32,33,146,76,242,144,32
DATA 46,146,62,160,2,41,127,145,157,136,177

DATA 157,133,9,136,177,157,133,8,177,8,133,6
DATA 200,177,8,136,145,157,160,2,177,8,136,145
DATA 157,165,254,229,6,133,254,176,2,198,255,145
DATA 8,165,255,200,145,8,164,6,136,177,157,145
DATA 254,152,208,248,240,189,165,161,208,8,32,110
DATA 145,32,128,145,144,9,165,254,133,111,165,255
DATA 133,112,96,162,1,177,252,201,255,208,234,136
DATA 177,252,48,5,232,32,20,146,36,136,177,252
DATA 32,20,146,138,145,252,200,165,254,145,252,200
DATA 165,255,145,252,208,203,169,7,133,7,56,165
DATA 105,233,7,133,8,165,106,233,0,133,9,96

DATA 24,165,7,170,101,8,133,8,144,2,230,9

DATA 224,7,240,54,166,9,160,0,228,160,208,25

DATA 197,159,208,21,240,62,160,0,177,8,48,220
DATA 200,177,8,16,215,136,165,8,105,2,144,1

DATA 232,133,252,134,253,177,252,133,6,200,177,252
DATA 133,157,170,200,177,252,133,158,24,96,166,9
DATA 228,108,208,210,197,107,208,206,70,7,133,159
DATA 134,160,165,159,160,160,0,228,110,208,4
DATA 197,109,240,225,133,8,134,9,177,8,170,200
DATA 177,8,72,200,177,8,101,159,133,159,200,177
DATA 8,101,160,133,160,104,16,214,138,48,211,200
DATA 177,8,10,105,5,101,8,133,8,144,129,230

DATA 9,76,144,145,164,254,208,2,198,255,198,254
DATA 160,0,145,254,96,162,1,181,115,149,254,149
DATA 157,202,240,247,160,0,165,158,197,112,144,43
DATA 198,158,136,177,157,48,5,152,208,248,240,238
DATA 72,166,158,152,24,101,157,144,1,232,228,112
DATA 144,16,208,4,197,111,144,10,233,2,133,157
DATA 176,1,202,134,158,56,104,96

54

(b) TASC compiler Programs written in BASIC may seem fast to
the newcomer to computers, especially when the task being
performed is relatively straightforward. However, as soon as a
BASIC program involves lots of complex calculations or lots of
sorting for example, its relative lack of speed soon becomes
apparent. For those of you who can program adequately in BASIC,
who need more speed than BASIC can provide but who don’t have
the time or inclination to become machine code programmers, a
BASIC compiler, such as the Microsoft TASC compiler, can
provide an acceptable compromise solution. The TASC compiler is
itself a program. It’s a program which takes another program, your
Applesoft BASIC program, examines it in detail and produces from
itablock of machine code which can be used to do the same things
that your BASIC program does. The original Applesoft program is
known as the source file and the block of machine code produced
from it is called the object file. When the object file is used no
‘interpretation’ is used and so the program runs much faster. One
extension to Applesoft provided by the package is the capability to
define COMMON variables which will always be stored in the
same location in memory — at the time of compilation TASC
provides the user with precise details of where such variables are
stored. Saving the relevant portion of memory onto disk as a binary
file provides a simple and very speedy way of storing even very
large arrays of numeric data on disk and it is just as easily read back
in again when needed. Very lengthy file-reading operations can be
reduced to just a few seconds of disk access using this technique.
There are some limitations attached to the use of the compiler. One
particularly convenient feature of Applesoft, the dynamic
dimensioning of arrays, isNOT available — TASC programs cannot
contain sequences which accept input of a variable and then use its
value to set up string or numeric arrays to suit. All TASC arrays
have to be explicitly dimensioned. On the other hand, true integer
arithmetic and a considerably more effective CHAIN function for
linking programs are valuable extensions to Applesoft. Working
effectively with TASC is an acquired skill, but the TASC compiler
is a very worthwhile piece of software.

55

(c) BitStik graphics The BitStik is a sophisticated joystick-like
device which can be used to produce and manipulate complex
high resolution graphics without involving the user in any
programming. It is interfaced with the Apple via the games
controller socket. Two disk drives, 64K of RAM, a colour TV or
monitor and colour card are needed to support the BitStik. After
booting up from the BitStik software, two disks are now inserted
into the drives. DRIVE 1: A Library Disk containing pre-prepared
graphical units that can be inserted into the graphics screen being
worked on. Such Library Disks can be prepared by the user using
BitStik software commands or, for a number of specialist
applications such as electronic circuit drafting, bought
commercially. DRIVE 2: A Work Disk on which the graphical
designs that BitStik produces can be saved. A drawing area is
presented on the screen with a range of options such as DRAW,
PAINT, TRACE and many others listed down the right-hand side of
the screen. A further set of parameters appropriate to the particular
option being used are presented along the bottom of the screen. The
software is already configured to give hard copy of graphics onto
the Epson MX—-80FT2 dot matrix printer and software for sending
BitStik originated drawings onto an X-Y plotter is available from
BitStik’s manufacturer for a range of well-known plotters including
Hewlett-Packard and Digiplot. The image produced by plotted
output is far superior to that visible on the screen or from a graphics
printer, with lines in any direction as straight and curves as smooth
as intended by the designer. A built-in feature of the BitStik
software is the ability to communicate with a Graphics Tablet
connected to the Apple via Slot 5. Selection of the TRACE option
from the screen menu allows the Graphics Tablet to take control of
the software. Drawings on paper placed on the Tablet can be
“traced” onto the BitStik screen for subsequent amendment.
BitStik and its associated software are sophisticated CAD tools well
worth your attention if the production and use of graphics figure at
all in your area of work. BitStik is manufactured by Robocom Ltd.,
CIL Building, Goodwin Street, London N4 3HQ.

56

(d)Winchester disks Floppy disks used with the Apple normally
contain a maximum of 140K characters. If this is insufficient for
your data handling needs, a Winchester ‘hard disk’ can provide
large (3—50 megabyte) on-line storage which is accessed very fast.
Costs are becoming very reasonable. A number of hard disk
systems do away with floppy disks altogether and rely on a variety
of other devices for backup storage. Most hard disk systems will be
‘transparent’ to the user in that standard Apple DOS commands can
be used to communicate with them.

(€) Print buffer Whenever your Apple is directed to output to a
printer the machine becomes fully occupied performing that task.
The printer is a very slow device by comparison with the computer
and, ifthe documents to be printed are long, you can lose the use of
the computer for considerable periods. Print buffers, which
contain lots of memory chips, are situated in-line between the
Apple and the printer. The Apple can send whole documents into
the buffer and get back to other jobs while the contents of the buffer
are then gradually released at the speed the printer can accept
them. Buffers may be built in as part of printer cards, as peripheral
cards mounted in the Apple or as self-contained devices with their
own power supply that are mounted outside the Apple.

(fJRAMcards Asan 8-bit processor, the 6502 microprocessor that
drives the Apple can only address 64K memory locations.
However, it is possible to have ‘banks’ of RAM using the same
memory space as each other, with the Apple switching from one
bank to another to find what. it needs. The extra memory can be
used to hold much bigger data arrays than the standard memory
configuration can cater for — this is particularly useful for work
with spreadsheet programs such as Visicalc. RAM cards can even
provide ‘virtual disk’ capability, holding the contents of whole
disks with programs’ DOS commands being directed there, instead
of to the real disk.

57

() Z-80 card This card provides your Apple with the Z-80
microprocessor that is essential in order to use the CP/M operating
system that, as an international standard, has been the basis for the
development of a very large amount of quality software on other
microcomputers. A number of manufacturers now supply these
cards, but the Z-80 Softcard from Microsoft comes complete with
the CP/M that is needed to use it — Microsoft M—BASIC and
G-BASIC are also provided. Once the Z-80 card is installed
(usually in Slot 4), it can be accessed either by booting up from a
CP/M formatted disk or by issuing a PR# command.

(h)Multifunction card Mountain Computer’s CPS Card can help
solve problems of equipment compatibility if that is likely to be a
problem. On one peripheral card three separate functions are
provided — a two way serial interface (for use with printers,
modems and other devices), a Centronics standard parallel output
interface and a real-time clock and calendar. The characteristics of
these three interfaces are user definable via a program that is
supplied with the card. Once defined, the interface characteristics
are stored in an area of RAM on the card itself. This RAM is kept
energized, along with the real-time clock, by a small battery also
mounted on the card. As with all powerful tools, the CPS card takes
some getting used to, but it offers real flexibility of use — and the
real-time clock can be very useful in providing for the automatic
dating of reports and listings produced by your software.

(i) Languages Languages other than Applesoft BASIC can of
course be loaded into the RAM that the Apple][language card (or
built-in RAM on the Apple //e) provides. COBOL, FORTRAN,
FORTH, LISP are available and UCSD Pascal is widely used by
Apple software writers for its particular advantages of structure
and speed of execution. Apple’s implementation of LOGO is
widely regarded as one of the best and, for educators, Apple
SuperPILOT provides an ideal environment for the development of
CAL software.

58

The Apple //e

If your Apple was produced after the beginning of 1983 then it will
be an Apple //e rather than an Apple J[. A significant revision of
the Apple’s construction, the keyboard and certain aspects of its
facilities was made in order to maintain the Apple I[’s
marketability in the face of competition from more recently
introduced personal computers. The Apple //e’s main features, its
Applesoft BASIC and its operation are essentially the same as those
of the Apple][and the biggest part of all Apple][software will run
on the Apple //e without modification — another example of the
philosophy of ‘upward compatibility’ that has allowed Apple
continually to improve its product but at the same time avoid
existing Apple users being left with wasted investment in software.
This section summarizes the important differences between the
Apple][and the Apple //e and points out the extra facilities
available to the //e user. While most of the following section
relates to all versions, certain specific detail relates to the UK
version of the //e only.

New features With the //e you can forget about the Language
Card. The //e comes equipped with 64K of RAM on the main board
so that, with Applesoft BASIC in ROM, Integer BASIC or Pascal
will be automatically loaded into 16K of the RAM when you boot
the system up from a disk which holds one of these other
languages. A much accelerated loading procedure incorporated
into the boot routine loads the alternative language in just a few
seconds. At last you can have upper- and lower-case text on your
Apple without any special chips, character generators or
peripheral cards. The shift keys and a capitals lock key are used to
control the case of text being produced. All keys on the keyboard
have an auto-repeat facility when held down. As well as LEFT— and
RIGHT-ARROW keys there are now UP—ARROW and
DOWN—ARROW keys as well. These are used to make movement
around the screen easier during editing.

59

The RETURN key is still present, and as important as ever, but it
isnow marked symbolically «— rather than with the word itself.
Some completely new keys are introduced

Del the DELETE key
—>i the TAB key
& the OPEN-APPLE key
€ the CLOSED-APPLE key

These keys are all programmable function keys in addition to
having certain intrinsic functions assigned to them by the Apple
//e hardware. OPEN- and CLOSED-APPLE are, among other
things, used to substitute for the buttons on the now-defunct Apple
Il games controllers, so that the //e can be used with the many
games programs designed for the][that used them. They are also
used to (a)Initiate a ‘cold boot’ — this is the equivalent of turning
off the mains power to initialize the Apple’s memory and then
booting up from the disk in Drive 1. To perform this ‘cold boot’ on
the //e hold down the CTRL-key and the OPEN-APPLE key and
then press and release the RESET button. (b)Perform a memory test
If you hold down the CTRL~ key, the OPEN-APPLE key and the
CLOSED-APPLE key all at once, and then press and release the
RESET button, the //e performs a test of its RAM chips and warns
the user if any faults are discovered. A small switch under the
keyboard projection at the front of the machine provides for
changing from £to # according to the application being used — the
switch is possible because two character sets (US and local) are
included in the //e’s character generator ROM. A miniature DB9
connector (wired in parallel with the existing games controller
socket) is mounted on the rear of the casing. This provides for
considerably easier connection of joysticks, dongles, BitStik, etc.
The //e is supplied with much less support documentation than
the][used to be. Applesoft BASIC manuals and technical guides
are now items for separate purchase only — their standard remains
high. An excellent introductory disk, ‘Apple presents Apple’,
provides a ‘hands-on’ tour around the machine’s facilities, new and
old.

60

//e expansion slots Inside the //e there are still eight slots for
expansion cards as in the Apple][, but there are some changes in
their function. In the Apple][Slot 0 was used only to house the
Language Card or additional RAM card. Since the //e comes with
64K RAM already there the need for a Language Card is done away
with and Slot 0 isn’t there any more! Slots 1 to 7 are still present at
the back of the main board and can be used with the whole range of
peripheral cards designed for the Apple]J[. The //e has one
additional slot which is specifically intended for an 80-column
card. In the UK version this ‘auxiliary slot’ is situated physically
in-line with the ordinary Slot 3 and is wired in parallel with it.
Inserting an 80-column card into the auxiliary slot prevents you
from using Slot 3. Two different 80-column cards are available
from Apple for use in the auxiliary slot:

(a) A standard card providing for 40- or 80-column display on 24
lines and for straightforward switching from one display mode to
the other.

(b) An ‘extended’ card which also provides an additional 64K of
RAM which can be used via bank-switching between blocks of
memory.

Whichever card is being used it is activated by a PR#3 command
which can be issued directly or from within a program. When the
80-column mode is activated it is possible to switch to and fro
between the 40- and 80-column display format according to the
needs of your program. Delivering warnings and displaying titles
might for example be best done in 40-column mode, while
spreadsheet type displays would benefit from using the 80-column
mode. Pressing CTRL—Q directly from the keyboard forces a
40-column display and CTRL-R forces the 80-column display.
From within programs PRINT CHR$(17) forces 40 columns and
PRINT CHR$(18) forces 80 columns.

61

//e TV connections The video output from the //e is a
composite video signal with colour information encoded to the
PAL standard used in the UK and certain other parts of the world.
This means that a colour card is no longer required to provide
output from the Apple which will give a display on the colour
monitors available locally. The quality of the colour display is
much better than that available from any of the colour cards that
were previously used to convert the Apple]J[’s American video
output standard to one that the UK monitors could use.

The //e still doesn’t provide a signal that can be fed directly into
the aerial socket of an ordinary TV receiver, but Apple Computer
(UK) do provide a relatively inexpensive solution to this
problem. The solution is in the form of a card mounted in Slot 7 for
support only, with two leads and plugs connected to terminals on
the main board. A lead from the card goes off through a firm
mounting on the backplate of the / /e to the aerial socket of a TV set.

In addition to sending the Apple’s video information as the radio
frequency signal your TV needs to make a picture, the card also
sends the sound output normally directed to the Apple’s internal
speaker! This means that the volume control on your TV can be
used to amplify music, synthesized voice or any other sound
output from the Apple. This feature should be of particular value if
your Apple is ever used for demonstrations to groups of people.

62

ISBN 0273

	Programming for the Apple - Pocket Guide
	Index
	How to Use this Pocket Guide
	Operating the Apple
	Installation
	Getting Started
	The Keyboard
	ASCII Codes
	Program Editing
	BASIC and DOS
	Contents of Disks
	DOS Commands
	Initializing Disks
	Copying Disks
	Copy Protection
	Using BASIC Programs
	Using Binary Files
	Using Text Files

	Applesoft Libraries
	Format Library
	Graphics Library
	File Library

	Peripheral Slots
	Software
	Extensions

	The Apple //e
	Back Cover

